Mostrar el registro sencillo

dc.contributor.authorPérez Carabaza, Sara 
dc.contributor.authorBoydell, Oisín
dc.contributor.authorO'Connell, Jerome
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-03-28T06:58:28Z
dc.date.available2022-03-28T06:58:28Z
dc.date.issued2021
dc.identifier.isbn978-1-6654-4762-1
dc.identifier.urihttp://hdl.handle.net/10902/24387
dc.description.abstractThe monitoring of threatened habitats is a key objective of European environmental policy. Due to the high cost of current field-based habitat mapping techniques there is a strong research interest in proposing solutions that reduce the cost of habitat monitoring through increasing their level of automation. Our work is motivated by the opportunities that recent advances in machine learning and Unmanned Aerial Vehicles (UAVs) offer to the habitat monitoring problem. In this paper, a deep learning based solution is proposed to classify four priority Irish habitats types present in the Maharees (Ireland) using UAV aerial imagery. The proposed method employs Convolutional Neural Networks (CNNs) to classify multi-temporal multi-spectral images of the study area corresponding to three different dates in 2020, obtaining an overall classification accuracy of 93%. A comparison of the proposed method with a multi-spectral 2D-CNN model demonstrates the advantage of including temporal information enabled by the proposed multi-temporal multi-spectral CNN model.es_ES
dc.description.sponsorshipThis project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 847402.es_ES
dc.format.extent4 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rights© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other workses_ES
dc.sourceIEEE International Geoscience and Remote Sensing Symposium (IGARSS 2021), Brussels, Belgium, 2021, 2556-2559es_ES
dc.subject.otherHabitat mappinges_ES
dc.subject.otherConvolutional neural networkses_ES
dc.subject.otherMulti-temporal imageryes_ES
dc.subject.otherAerial imageryes_ES
dc.titleMonitoring threatened irish habitats using multi-temporal multispectral aerial imagery and convolutional neural networkses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/IGARSS47720.2021.9553472es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/IGARSS47720.2021.9553472
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo