• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Congresos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Congresos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Monitoring threatened irish habitats using multi-temporal multispectral aerial imagery and convolutional neural networks

    Ver/Abrir
    MonitoringThreatened ... (1.952Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/24387
    DOI: 10.1109/IGARSS47720.2021.9553472
    ISBN: 978-1-6654-4762-1
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Pérez Carabaza, SaraAutoridad Unican; Boydell, Oisín; O'Connell, Jerome
    Fecha
    2021
    Derechos
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
    Publicado en
    IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2021), Brussels, Belgium, 2021, 2556-2559
    Editorial
    Institute of Electrical and Electronics Engineers, Inc.
    Enlace a la publicación
    https://doi.org/10.1109/IGARSS47720.2021.9553472
    Palabras clave
    Habitat mapping
    Convolutional neural networks
    Multi-temporal imagery
    Aerial imagery
    Resumen/Abstract
    The monitoring of threatened habitats is a key objective of European environmental policy. Due to the high cost of current field-based habitat mapping techniques there is a strong research interest in proposing solutions that reduce the cost of habitat monitoring through increasing their level of automation. Our work is motivated by the opportunities that recent advances in machine learning and Unmanned Aerial Vehicles (UAVs) offer to the habitat monitoring problem. In this paper, a deep learning based solution is proposed to classify four priority Irish habitats types present in the Maharees (Ireland) using UAV aerial imagery. The proposed method employs Convolutional Neural Networks (CNNs) to classify multi-temporal multi-spectral images of the study area corresponding to three different dates in 2020, obtaining an overall classification accuracy of 93%. A comparison of the proposed method with a multi-spectral 2D-CNN model demonstrates the advantage of including temporal information enabled by the proposed multi-temporal multi-spectral CNN model.
    Colecciones a las que pertenece
    • D20 Congresos [56]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España