• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Congresos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Congresos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of pulsed thermographic sequences based on radon transform

    Ver/Abrir
    Analysis of pulsed.pdf (2.623Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/2428
    DOI: 10.1117/12.665461
    ISSN: 1996-756X
    ISSN: 0277-786X
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    González Fernández, Daniel Aquilino; Ibarra Castanedo, Clemente; Madruga Saavedra, Francisco JavierAutoridad Unican; Maldague, Xavier P. V.
    Fecha
    2006-04-18
    Derechos
    © 2006 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
    Publicado en
    Proceedings of SPIE, 2006, vol. 6205, 62051N
    Thermosense XXVIII, Orlando (FL), 2006
    Editorial
    SPIE Society of Photo-Optical Instrumentation Engineers
    Enlace a la publicación
    http://dx.doi.org/10.1117/12.665461
    Palabras clave
    Pulsed thermography
    Image processing
    Radon transform
    Defect detection
    Resumen/Abstract
    The automatic detection of subsurface defects has become a desired goal in the application of Non Destructive Techniques. In this paper, a new algorithm based on the Radon Transform is proposed to reduce human intervention to a minimum in the field of Thermography for defect detection and/or characterization. The analysis of a thermographic sequence for the detection of subsurface defects can be reduced to the identification of the -0.5 slope in the surface temperature decay for each pixel within the image. Employing techniques commonly used in computer vision, an algorithm can be developed in order to look for the -0.5 slope in the temporal temperature decay profiles of each pixel. In our case, the Radon transform can be used to detect those -0.5 slope lines in the temporal temperature decay profiles. The final result provided by this algorithm is an image showing the different defects avoiding the necessity of evaluating parameters as relevant in other algorithms as the delayed time of the first image or any subjective point of view in the analysis. All the information is contained in only one image and leads to a quantitative estimation of the defect depths. The principal limitation is that the specimens under inspection should be semi-infinite homogeneous samples because this algorithm is supported on a 1-D Fourier diffusion equation approximation. Experimental works using a PlexiglasTM specimen were performed showing a good agreement with other semi-automated techniques.
    Colecciones a las que pertenece
    • D50 Congresos [464]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España