Mostrar el registro sencillo

dc.contributor.authorGarcía Allende, Pilar Beatriz
dc.contributor.authorConde Portilla, Olga María 
dc.contributor.authorCubillas de Cos, Ana María
dc.contributor.authorJáuregui Misas, César
dc.contributor.authorMirapeix Serrano, Jesús María 
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-06-17T14:00:50Z
dc.date.available2013-06-17T14:00:50Z
dc.date.issued2006-09
dc.identifier.urihttp://hdl.handle.net/10902/2420
dc.description.abstractA non-intrusive, non-contact, real-time system for the detection of non desirable material in raw material chains on industry environments is presented. Through a spatial optical spectroscopic technique, scene line spectrographs based on the Visible-Near Infrared (Vis-NIR) reflectance of the material under study, are obtained. To reach a representative spectral fingerprint, the large amount of data is compressed using Principal Component Analysis (PCA) fast algorithm prior to the classification made by a Neural Network. The technique has been successfully checked on the tobacco industry. However, instead of tobacco leaves, other materials can be discriminated or classified using this technique.es_ES
dc.format.extent4 p.es_ES
dc.language.isospaes_ES
dc.rights© 2006 URSI Españaes_ES
dc.sourceURSI 2006, XXI Simposium Nacional de la Unión Científica Internacional de Radio, Oviedo, p. 554-557es_ES
dc.titleSistema de clasificación de materias primas mediante espectroscopía óptica de imagenes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessRightsopenAccesses_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo