Mostrar el registro sencillo

dc.contributor.authorChuliá-Jordán, Raquel
dc.contributor.authorSantamaria-Perez, David
dc.contributor.authorRuiz Fuertes, Javier 
dc.contributor.authorOtero-de-la-Roza, Alberto
dc.contributor.authorPopescu, Catalin
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-03-08T11:10:42Z
dc.date.available2022-03-08T11:10:42Z
dc.date.issued2021-06-06
dc.identifier.issn2075-163X
dc.identifier.otherMAT2015-71070-REDCes_ES
dc.identifier.otherPGC2018-097520-A-I00es_ES
dc.identifier.otherFIS2017-83295-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/24164
dc.description.abstractABSTRACT: The structure of the naturally occurring, iron-rich mineral Ca₁․₀₈(₆)Mg₀.₂₄(₂)Fe₀.₆₄(₄)Mn₀.₆₄(₄)(CO₃)₂ ankerite was studied in a joint experimental and computational study. Synchrotron X-ray powder diffraction measurements up to 20 GPa were complemented by density functional theory calculations. The rhombohedral ankerite structure is stable under compression up to 12 GPa. A third-order Birch-Murnaghan equation of state yields V₀ = 328.2(3) ų, bulk modulus B₀ = 89(4) GPa, and its first-pressure derivative B'₀ = 5.3(8)-values which are in good agreement with those obtained in our calculations for an ideal CaFe(CO₃)₂ ankerite composition. At 12 GPa, the iron-rich ankerite structure undergoes a reversible phase transition that could be a consequence of increasingly non-hydrostatic conditions above 10 GPa. The high-pressure phase could not be characterized. DFT calculations were used to explore the relative stability of several potential high-pressure phases (dolomite-II-, dolomite-III- and dolomite-V-type structures), and suggest that the dolomite-V phase is the thermodynamically stable phase above 5 GPa. A novel high-pressure polymorph more stable than the dolomite-III-type phase for ideal CaFe(CO₃)₂ ankerite was also proposed. This high-pressure phase consists of Fe and Ca atoms in sevenfold and ninefold coordination, respectively, while carbonate groups remain in a trigonal planar configuration. This phase could be a candidate structure for dense carbonates in other compositional systems.es_ES
dc.description.sponsorshipThis research was funded by the Spanish Ministerio de Ciencia, Innovación, y Universidades (MICINN) under the projects MALTA Consolider Ingenio 2010 network MAT2015-71070-REDC and PGC2018-097520-A-I00 (co-financed by EU FEDER funds), and by the Generalitat Valenciana under project PROMETEO/2018/123. D.S.-P. and A.O.R. acknowledge the financial support of the Spanish MINECO for the RyC-2014-15643 and RyC-2016-20301 Ramon y Cajal Grants, respectively. C.P acknowledges the financial support of the Spanish Ministerio de Economia y Competitividad (MINECO project FIS2017-83295-P).es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceMinerals 2021, 11(6), 607es_ES
dc.subject.otherIron-rich ankeritees_ES
dc.subject.otherCarbonate minerales_ES
dc.subject.otherHigh pressurees_ES
dc.subject.otherPhase transitiones_ES
dc.subject.otherCompressibilityes_ES
dc.titleCompressibility and phase stability of iron-rich ankeritees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3390/min11060607es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/min11060607
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International