Mostrar el registro sencillo

dc.contributor.authorMezghani, Fares
dc.contributor.authorFernández del Rincón, Alfonso 
dc.contributor.authorGarcía Fernández, Pablo (ingeniero) 
dc.contributor.authorJuan de Luna, A. M. de 
dc.contributor.authorSánchez Espiga, Javier 
dc.contributor.authorViadero Rueda, Fernando 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-02-28T14:15:59Z
dc.date.available2024-02-29T00:47:19Z
dc.date.issued2022-02-01
dc.identifier.issn0888-3270
dc.identifier.issn1096-1216
dc.identifier.otherPID2020-116572RA-I00es_ES
dc.identifier.urihttp://hdl.handle.net/10902/24079
dc.description.abstractWire Mesh Vibration Damper (WMVD) is proposed for the protection of vibration-sensitive equipment, such as Information Technology (IT) equipment, from seismic events. The mathematical model of the proposed isolator is primarily defined and then implemented to develop the Matlab Simscape MultibodyTM model of the WMVD isolated system subjected to earthquake induced floor motion. The latter is simultaneously generated for natural earthquake records and scaled to satisfy the GR-63-CORE (Zone 4) standard requirements via an artificial seismic time-history generation procedure, developed in the present work. In order to study the isolation effectiveness of the WMVD, comparative analysis with linear anti-seismic support is firstly provided. Results reveal that the WMVD isolated system can effectively attenuate seismic response more than 85%, whereas the seismic responses of the linearly isolated system increase by 160% as compared to the ground motion acceleration. Subsequently, an Incremental Dynamic Analysis (IDA) by specifying the operational vibration limit of the sensitive equipment mounted on the WMVD, is conducted to create the fragility curves. Considering the maximum acceleration response as engineering demand parameter, seismic fragility analysis eventually demonstrates the performance of the WMVD to protect the sensitive equipment from floor motion excitation.es_ES
dc.description.sponsorshipThe authors acknowledges the support of “Augusto González de Linares” Post-Doctoral Fellowship POS-UC-2019-10. This work has been performed under the Project PID2020-116572RA-I00, funded by the Spanish Ministry of Science and Innovation. This support is gratefully appreciated.es_ES
dc.format.extent32 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2021, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceMechanical Systems and Signal Processing, 2022, 164, 108160es_ES
dc.subject.otherWire mesh vibration damperes_ES
dc.subject.otherVibration-sensitive equipment protectiones_ES
dc.subject.otherMatlab Simscape MultibodyTM modeles_ES
dc.subject.otherArtificial seismic time-history generation procedurees_ES
dc.subject.otherComparative analysises_ES
dc.subject.otherFragility analysises_ES
dc.titleEffectiveness study of wire mesh vibration damper for sensitive equipment protection from seismic eventses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.ymssp.2021.108160es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.ymssp.2021.108160
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2021, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaExcepto si se señala otra cosa, la licencia del ítem se describe como © 2021, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivada