Mostrar el registro sencillo

dc.contributor.authorSierra-C ardenas, Erika
dc.contributor.authorUsaquén-Perilla, Olga
dc.contributor.authorFonseca-Molano, Mauricio
dc.contributor.authorOchoa-Echeverría, Mauricio
dc.contributor.authorDíaz-G omez, Jaime
dc.contributor.authorJesús Peñil, Manuel del 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-02-24T13:37:24Z
dc.date.available2022-02-24T13:37:24Z
dc.date.issued2022
dc.identifier.issn0899-8418
dc.identifier.issn1097-0088
dc.identifier.urihttp://hdl.handle.net/10902/24056
dc.description.abstractABSTRACT: Climate variability, as an element of uncertainty in water management, affects community, sectoral, and individual decision-making. Long-range prediction models are tools that offer the potential for integration and joint analysis with the hydrological, hydrodynamic, and management response of the socio-ecological systems to which they are linked. The main objective of this article is to present a seasonal climate prediction model, the open-source algorithm SIE-Climate, whose application consists of three phases (exploration, development, and evaluation), and to describe its application to the Lake Sochagota socio-ecological system (Paipa, Boyacá, Colombia). The K-nearest neighbours method is used when defining a target matrix that represents and integrates macro- and micro-climatic phenomena (Oceanic Niño Index, local temperature, and local rainfall) to identify periods of similar climatic behaviour. Considering a 1-year horizon and management purposes the tool is calibrated and validated in periods with and without climatic anomalies (2000?2018), giving reliable adjustment results (RSME:4.86; R2: 0.95; PBIAS: -8.89%; EFF: 0.85). SIE-Climate can be adapted to various contexts, variables of interest, and temporal and spatial scales, with an appropriate technological and computational cost for regional water management.es_ES
dc.format.extent21 p.es_ES
dc.language.isoenges_ES
dc.publisherJohn Wiley and Sons Ltdes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceInternational Journal of Climatology 2022, 42, 2. 868-888es_ES
dc.subject.otherClimatic variabilityes_ES
dc.subject.otherK-nearest neighbours (KNN)es_ES
dc.subject.otherSIE-climate softwarees_ES
dc.titleSIE-Climate: A methodological and technological tool for predicting local climate variability in managing socio-ecological systemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1002/joc.7277es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1002/joc.7277
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International