Mostrar el registro sencillo

dc.contributor.authorMerino García, Iván 
dc.contributor.authorTinat, Lionel
dc.contributor.authorAlbo Sánchez, Jonathan 
dc.contributor.authorÁlvarez Guerra, Manuel 
dc.contributor.authorIrabien Gulías, Ángel 
dc.contributor.authorDurupthy, Olivier
dc.contributor.authorVivier, Vicent
dc.contributor.authorSánchez Sánchez, Carlos Manuel
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-02-18T08:10:51Z
dc.date.available2023-11-30T02:18:21Z
dc.date.issued2021-11-15
dc.identifier.issn0926-3373
dc.identifier.issn1873-3883
dc.identifier.otherCTQ2016-76231-C2-1-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/23997
dc.description.abstractTin oxide nanoparticles (SnO2 NPs) as electrocatalyst for the production of formate from CO2 reduction reaction (CO2RR). We synthesize, characterize and evaluate high surface area SnO2 NPs (2.4 nm and 299 m2 g-1 in diameter size and surface area, respectively), for the continuous production of formate at high current density within a flow electrolyzer. SnO2 NPs under Ar and CO2 reduction conditions were studied by cyclic voltammetry. SnO2-based gas diffusion electrodes (SnO2-GDEs) were manufactured to perform continuous CO2RR. A maximum formate concentration value of 27 g L-1 was achieved with a Faradaic efficiency (FE) of 44.9 % at 300 mA cm-2, which was significantly stable and reproducible when operated up to 10 h. Nevertheless, ohmic drop contribution due to the semiconducting properties of SnO2 was not negligible. The low total FE (< 60 %) of products pointed out a leakage of formate by crossover migration through the membrane from the catholyte towards the anolyte.es_ES
dc.description.sponsorshipThe authors gratefully acknowledge the financial sources from the Spanish Ministry of Economy and Competitiveness (MINECO), through the project CTQ2016-76231-C2-1-R (AEI/FEDER, UE). Moreover, I.M.- G. and C.M. S.-S would like to thank the MINECO for the postdoctoral period in Paris of the predoctoral research contract (BES-2014-070081) and J. A. for the Ramón y Cajal programme (RYC-2015-17080), respectively. L.T. and O.D. acknowledge the support of French governmental funds managed by the ANR within the Investissements d’Avenir programme under reference ANR-11-IDEX-0004-02, and more specifically within the framework of the Cluster of Excellence MATISSE led by Sorbonne Universit´e. Dr. G. Gouget is strongly acknowledge for HR-TEM images.es_ES
dc.format.extent22 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceApplied Catalysis B: Environmental, 2021, 297, 120447es_ES
dc.subject.otherCO2 electroreductiones_ES
dc.subject.otherFormatees_ES
dc.subject.otherSnO2 nanoparticleses_ES
dc.subject.otherContinuous reactores_ES
dc.subject.otherGas diffusion electrodeses_ES
dc.titleContinuous electroconversion of CO2 into formate using 2 nm tin oxide nanoparticleses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.apcatb.2021.120447es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.apcatb.2021.120447
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license