Mostrar el registro sencillo

dc.contributor.authorGarcía Allende, Pilar Beatriz
dc.contributor.authorAnabitarte García, Francisco 
dc.contributor.authorConde Portilla, Olga María 
dc.contributor.authorMirapeix Serrano, Jesús María 
dc.contributor.authorMadruga Saavedra, Francisco Javier 
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-06-14T09:18:16Z
dc.date.available2013-06-14T09:18:16Z
dc.date.issued2008-04-11
dc.identifier.issn1996-756X
dc.identifier.issn0277-786X
dc.identifier.otherTEC2005-08218-C02-02es_ES
dc.identifier.otherTEC2007-67987-C02-01es_ES
dc.identifier.urihttp://hdl.handle.net/10902/2390
dc.description.abstractA processing methodology based on Support Vector Machines is presented in this paper for the classification of hyperspectral spectroscopic images. The accurate classification of the images is used to perform on-line material identification in industrial environments. Each hyperspectral image consists of the diffuse reflectance of the material under study along all the points of a line of vision. These images are measured through the employment of two imaging spectrographs operating at Vis-NIR, from 400 to 1000 nm, and NIR, from 1000 to 2400 nm, ranges of the spectrum, respectively. The aim of this work is to demonstrate the robustness of Support Vector Machines to recognise certain spectral features of the target. Furthermore, research has been made to find the adequate SVM configuration for this hyperspectral application. In this way, anomaly detection and material identification can be efficiently performed. A classifier with a combination of a Gaussian Kernel and a non linear Principal Component Analysis, namely k-PCA is concluded as the best option in this particular case. Finally, experimental tests have been carried out with materials typical of the tobacco industry (tobacco leaves mixed with unwanted spurious materials, such as leathers, plastics, etc.) to demonstrate the suitability of the proposed technique.es_ES
dc.description.sponsorshipThis work has been co-supported by the Science and Technology Ministry of the Spanish Government through the TEC2005-08218-C02-02 and TEC2007-67987-C02-01 projects.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherSPIE Society of Photo-Optical Instrumentation Engineerses_ES
dc.rights© 2008 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.es_ES
dc.sourceProceedings of SPIE, 2008, vol. 6966, 69661Ves_ES
dc.sourceAlgorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV, Orlando (FL), 2008es_ES
dc.subject.otherSupport vector machines (SVM)es_ES
dc.subject.otherPrincipal component analysis (PCA)es_ES
dc.subject.otherImaging spectroscopyes_ES
dc.subject.otherAnomaly detectiones_ES
dc.subject.otherMaterial identificationes_ES
dc.titleSupport vector machines in hyperspectral imaging spectroscopy with application to material identificationes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.1117/12.770306es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1117/12.770306
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo