• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Instituto de Hidráulica Ambiental de Cantabria 'IH Cantabria'
    • D56 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Instituto de Hidráulica Ambiental de Cantabria 'IH Cantabria'
    • D56 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification of Dominant Hydrological Mechanisms Using Bayesian Inference, Multiple Statistical Hypothesis Testing, and Flexible Models

    Ver/Abrir
    Water Resources Research ... (2.440Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/23906
    DOI: 10.1029/2020WR028338
    ISSN: 0043-1397
    ISSN: 1944-7973
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Prieto Sierra, Cristina; Kavetski, Dmitri; Le Vine, Nataliya; Álvarez Díaz, CésarAutoridad Unican; Medina Santamaría, RaúlAutoridad Unican
    Fecha
    2021
    Derechos
    © American Geophysical Union
    Publicado en
    Water Resources Research 2021, 57, 8, e2020WR028338
    Editorial
    American Geophysical Union
    Enlace a la publicación
    https://doi.org/10.1029/2020WR028338
    Resumen/Abstract
    ABSTARCT: In hydrological modeling, the identification of model mechanisms best suited for representing individual hydrological (physical) processes is of major scientific and operational interest. We present a statistical hypothesis-testing perspective on this model identification challenge and contribute a mechanism identification framework that combines: (i) Bayesian estimation of posterior probabilities of individual mechanisms from a given ensemble of model structures; (ii) a test statistic that defines a ?dominant? mechanism as a mechanism more probable than all its alternatives given observed data; and (iii) a flexible modeling framework to generate model structures using combinations of available mechanisms. The uncertainty in the test statistic is approximated using bootstrap sampling from the model ensemble. Synthetic experiments (with varying error magnitude and multiple replicates) and real data experiments are conducted using the hydrological modeling system FUSE (7 processes and 2?4 mechanisms per process yielding 624 feasible model structures) and data from the Leizarán catchment in northern Spain. The mechanism identification method is reliable: it identifies the correct mechanism as dominant in all synthetic trials where an identification is made. As data/model errors increase, statistical power (identifiability) decreases, manifesting as trials where no mechanism is identified as dominant. The real data case study results are broadly consistent with the synthetic analysis, with dominant mechanisms identified for 4 of 7 processes. Insights on which processes are most/least identifiable are also reported. The mechanism identification method is expected to contribute to broader community efforts on improving model identification and process representation in hydrology.
    Colecciones a las que pertenece
    • D56 Artículos [333]
    • D56 Proyectos de Investigación [187]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España