• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Congresos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Congresos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Support vector machines in hyperspectral imaging spectroscopy with application to material identification

    Ver/Abrir
    Support Vector.pdf (375.7Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/2390
    DOI: 10.1117/12.770306
    ISSN: 1996-756X
    ISSN: 0277-786X
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    García Allende, Pilar Beatriz; Anabitarte García, FranciscoAutoridad Unican; Conde Portilla, Olga MaríaAutoridad Unican; Mirapeix Serrano, Jesús MaríaAutoridad Unican; Madruga Saavedra, Francisco JavierAutoridad Unican; López Higuera, José MiguelAutoridad Unican
    Fecha
    2008-04-11
    Derechos
    © 2008 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
    Publicado en
    Proceedings of SPIE, 2008, vol. 6966, 69661V
    Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV, Orlando (FL), 2008
    Editorial
    SPIE Society of Photo-Optical Instrumentation Engineers
    Enlace a la publicación
    http://dx.doi.org/10.1117/12.770306
    Palabras clave
    Support vector machines (SVM)
    Principal component analysis (PCA)
    Imaging spectroscopy
    Anomaly detection
    Material identification
    Resumen/Abstract
    A processing methodology based on Support Vector Machines is presented in this paper for the classification of hyperspectral spectroscopic images. The accurate classification of the images is used to perform on-line material identification in industrial environments. Each hyperspectral image consists of the diffuse reflectance of the material under study along all the points of a line of vision. These images are measured through the employment of two imaging spectrographs operating at Vis-NIR, from 400 to 1000 nm, and NIR, from 1000 to 2400 nm, ranges of the spectrum, respectively. The aim of this work is to demonstrate the robustness of Support Vector Machines to recognise certain spectral features of the target. Furthermore, research has been made to find the adequate SVM configuration for this hyperspectral application. In this way, anomaly detection and material identification can be efficiently performed. A classifier with a combination of a Gaussian Kernel and a non linear Principal Component Analysis, namely k-PCA is concluded as the best option in this particular case. Finally, experimental tests have been carried out with materials typical of the tobacco industry (tobacco leaves mixed with unwanted spurious materials, such as leathers, plastics, etc.) to demonstrate the suitability of the proposed technique.
    Colecciones a las que pertenece
    • D50 Congresos [464]
    • D50 Proyectos de Investigación [404]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España