Mostrar el registro sencillo

dc.contributor.authorGarcía Allende, Pilar Beatriz
dc.contributor.authorConde Portilla, Olga María 
dc.contributor.authorAmado González, Marta
dc.contributor.authorQuintela Incera, Antonio 
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-06-14T09:14:55Z
dc.date.available2013-06-14T09:14:55Z
dc.date.issued2008-04-11
dc.identifier.issn1996-756X
dc.identifier.issn0277-786X
dc.identifier.otherTEC2005-08218-C02-02es_ES
dc.identifier.otherTEC2007-67987-C02-01es_ES
dc.identifier.urihttp://hdl.handle.net/10902/2389
dc.description.abstractA processing algorithm to classify hyperspectral images from an imaging spectroscopic sensor is investigated in this paper. In this research two approaches are followed. First, the feasibility of an analysis scheme consisting of spectral feature extraction and classification is demonstrated. Principal component analysis (PCA) is used to perform data dimensionality reduction while the spectral interpretation algorithm for classification is the K nearest neighbour (KNN). The performance of the KNN method, in terms of accuracy and classification time, is determined as a function of the compression rate achieved in the PCA pre-processing stage. Potential applications of these hyperspectral sensors for foreign object detection in industrial scenarios are enormous, for example in raw material quality control. KNN classifier provides an enormous improvement in this particular case, since as no training is required, new products can be added in any time. To reduce the high computational load of the KNN classifier, a generalization of the binary tree employed in sorting and searching, kd-tree , has been implemented in a second approach. Finally, the performance of both strategies, with or without the inclusion of the kd-tree, has been successfully tested and their properties compared in the raw material quality control of the tobacco industry.es_ES
dc.description.sponsorshipThis work has been co-supported by the Spanish TEC’2005-08218-C02-02 and TEC’2007-67987-C02-01 projects.es_ES
dc.format.extent9 p.es_ES
dc.language.isoenges_ES
dc.publisherSPIE Society of Photo-Optical Instrumentation Engineerses_ES
dc.rights© 2008 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.es_ES
dc.sourceProceedings of SPIE, 2008, vol. 6966, 69660Hes_ES
dc.sourceAlgorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV, Orlando (FL), 2008es_ES
dc.subject.otherNearest neighbours (KNN)es_ES
dc.subject.otherPrincipal component analysis (PCA)es_ES
dc.subject.otherKd-treees_ES
dc.subject.otherImaging spectroscopyes_ES
dc.subject.otherHyperspectral spectrographes_ES
dc.titleHyperspectral data processing algorithm combining principal component analysis and K nearest neighbourses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.1117/12.770298es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MEC//TEC2005-08218-C02-02/ES/CARACTERIZACION DE MATERIALES POR ESPECTROSCOPÍA DE IMAGEN (CIMA)/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MEC//TEC2007-67987-C02-01/ES/ESTRUCTURAS PARA SENSORES FOTONICOS I/es_ES
dc.identifier.DOI10.1117/12.770298
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo