• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Congresos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Congresos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hyperspectral data processing algorithm combining principal component analysis and K nearest neighbours

    Ver/Abrir
    Hyperspectral data.pdf (410.6Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/2389
    DOI: 10.1117/12.770298
    ISSN: 1996-756X
    ISSN: 0277-786X
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    García Allende, Pilar Beatriz; Conde Portilla, Olga MaríaAutoridad Unican; Amado González, Marta; Quintela Incera, AntonioAutoridad Unican; López Higuera, José MiguelAutoridad Unican
    Fecha
    2008-04-11
    Derechos
    © 2008 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
    Publicado en
    Proceedings of SPIE, 2008, vol. 6966, 69660H
    Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV, Orlando (FL), 2008
    Editorial
    SPIE Society of Photo-Optical Instrumentation Engineers
    Enlace a la publicación
    http://dx.doi.org/10.1117/12.770298
    Palabras clave
    Nearest neighbours (KNN)
    Principal component analysis (PCA)
    Kd-tree
    Imaging spectroscopy
    Hyperspectral spectrograph
    Resumen/Abstract
    A processing algorithm to classify hyperspectral images from an imaging spectroscopic sensor is investigated in this paper. In this research two approaches are followed. First, the feasibility of an analysis scheme consisting of spectral feature extraction and classification is demonstrated. Principal component analysis (PCA) is used to perform data dimensionality reduction while the spectral interpretation algorithm for classification is the K nearest neighbour (KNN). The performance of the KNN method, in terms of accuracy and classification time, is determined as a function of the compression rate achieved in the PCA pre-processing stage. Potential applications of these hyperspectral sensors for foreign object detection in industrial scenarios are enormous, for example in raw material quality control. KNN classifier provides an enormous improvement in this particular case, since as no training is required, new products can be added in any time. To reduce the high computational load of the KNN classifier, a generalization of the binary tree employed in sorting and searching, kd-tree , has been implemented in a second approach. Finally, the performance of both strategies, with or without the inclusion of the kd-tree, has been successfully tested and their properties compared in the raw material quality control of the tobacco industry.
    Colecciones a las que pertenece
    • D50 Congresos [470]
    • D50 Proyectos de Investigación [421]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España