Mostrar el registro sencillo

dc.contributor.authorGarcía Allende, Pilar Beatriz
dc.contributor.authorConde Portilla, Olga María 
dc.contributor.authorMadruga Saavedra, Francisco Javier 
dc.contributor.authorCubillas de Cos, Ana María
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-06-14T08:58:27Z
dc.date.available2013-06-14T08:58:27Z
dc.date.issued2008-03-17
dc.identifier.issn1996-756X
dc.identifier.issn0277-786X
dc.identifier.otherTEC2005-08218-C02-02es_ES
dc.identifier.otherTEC2007-67987-C02-01es_ES
dc.identifier.urihttp://hdl.handle.net/10902/2387
dc.description.abstractA non-intrusive infrared sensor for the detection of spurious elements in an industrial raw material chain has been developed. The system is an extension to the whole near infrared range of the spectrum of a previously designed system based on the Vis-NIR range (400 - 1000 nm). It incorporates a hyperspectral imaging spectrograph able to register simultaneously the NIR reflected spectrum of the material under study along all the points of an image line. The working material has been different tobacco leaf blends mixed with typical spurious elements of this field such as plastics, cardboards, etc. Spurious elements are discriminated automatically by an artificial neural network able to perform the classification with a high degree of accuracy. Due to the high amount of information involved in the process, Principal Component Analysis is first applied to perform data redundancy removal. By means of the extension to the whole NIR range of the spectrum, from 1000 to 2400 nm, the characterization of the material under test is highly improved. The developed technique could be applied to the classification and discrimination of other materials, and, as a consequence of its non-contact operation it is particularly suitable for food quality control.es_ES
dc.description.sponsorshipThis work has been co-supported by the Science and Technology Ministry of the Spanish Government through the TEC’2005-08218-C02-02 and TEC’2007-67987-C02-01 projects. The authors also thank Infaimon Company and its staff, especially C. López and C. Carreté, for their valuable help during the arrangement of the measurement set-up.es_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherSPIE Society of Photo-Optical Instrumentation Engineerses_ES
dc.rights© 2008 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.es_ES
dc.sourceProceedings of SPIE, 2008, vol. 6939, 69390Hes_ES
dc.sourceThermosense XXX, Orlando (FL), 2008es_ES
dc.subject.otherImaging spectroscopyes_ES
dc.subject.otherHyperspectral spectrographes_ES
dc.subject.otherArtificial neural networks (ANN)es_ES
dc.subject.otherPrincipal component analysis (PCA)es_ES
dc.subject.otherAutomatic classificationes_ES
dc.titleIndustrial defect discrimination applying infrared imaging spectroscopy and artificial neural networkses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.1117/12.770279es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MEC//TEC2005-08218-C02-02/ES/CARACTERIZACION DE MATERIALES POR ESPECTROSCOPÍA DE IMAGEN (CIMA)/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MEC//TEC2007-67987-C02-01/ES/ESTRUCTURAS PARA SENSORES FOTONICOS I/es_ES
dc.identifier.DOI10.1117/12.770279
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo