• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Congresos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Congresos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Industrial defect discrimination applying infrared imaging spectroscopy and artificial neural networks

    Ver/Abrir
    Industrial defect.pdf (848.1Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/2387
    DOI: 10.1117/12.770279
    ISSN: 1996-756X
    ISSN: 0277-786X
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    García Allende, Pilar Beatriz; Conde Portilla, Olga MaríaAutoridad Unican; Madruga Saavedra, Francisco JavierAutoridad Unican; Cubillas de Cos, Ana María; López Higuera, José MiguelAutoridad Unican
    Fecha
    2008-03-17
    Derechos
    © 2008 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
    Publicado en
    Proceedings of SPIE, 2008, vol. 6939, 69390H
    Thermosense XXX, Orlando (FL), 2008
    Editorial
    SPIE Society of Photo-Optical Instrumentation Engineers
    Enlace a la publicación
    http://dx.doi.org/10.1117/12.770279
    Palabras clave
    Imaging spectroscopy
    Hyperspectral spectrograph
    Artificial neural networks (ANN)
    Principal component analysis (PCA)
    Automatic classification
    Resumen/Abstract
    A non-intrusive infrared sensor for the detection of spurious elements in an industrial raw material chain has been developed. The system is an extension to the whole near infrared range of the spectrum of a previously designed system based on the Vis-NIR range (400 - 1000 nm). It incorporates a hyperspectral imaging spectrograph able to register simultaneously the NIR reflected spectrum of the material under study along all the points of an image line. The working material has been different tobacco leaf blends mixed with typical spurious elements of this field such as plastics, cardboards, etc. Spurious elements are discriminated automatically by an artificial neural network able to perform the classification with a high degree of accuracy. Due to the high amount of information involved in the process, Principal Component Analysis is first applied to perform data redundancy removal. By means of the extension to the whole NIR range of the spectrum, from 1000 to 2400 nm, the characterization of the material under test is highly improved. The developed technique could be applied to the classification and discrimination of other materials, and, as a consequence of its non-contact operation it is particularly suitable for food quality control.
    Colecciones a las que pertenece
    • D50 Congresos [470]
    • D50 Proyectos de Investigación [421]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España