Mostrar el registro sencillo

dc.contributor.authorCeballos Santos, Sandra 
dc.contributor.authorDíez González-Pardo, Jaime 
dc.contributor.authorCarslaw, David C.
dc.contributor.authorSanturtún Zarrabeitia, Ana 
dc.contributor.authorSantibáñez Margüello, Miguel 
dc.contributor.authorFernández Olmo, Ignacio 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-02-03T17:27:53Z
dc.date.available2022-02-03T17:27:53Z
dc.date.issued2021-12-18
dc.identifier.issn1661-7827
dc.identifier.issn1660-4601
dc.identifier.urihttp://hdl.handle.net/10902/23849
dc.description.abstractThe global COVID-19 pandemic that began in late December 2019 led to unprecedented lockdowns worldwide, providing a unique opportunity to investigate in detail the impacts of restricted anthropogenic emissions on air quality. A wide range of strategies and approaches exist to achieve this. In this paper, we use the "deweather" R package, based on Boosted Regression Tree (BRT) models, first to remove the influences of meteorology and emission trend patterns from NO, NO2, PM10 and O3 data series, and then to calculate the relative changes in air pollutant levels in 2020 with respect to the previous seven years (2013-2019). Data from a northern Spanish region, Cantabria, with all types of monitoring stations (traffic, urban background, industrial and rural) were used, dividing the calendar year into eight periods according to the intensity of government restrictions. The results showed mean reductions in the lockdown period above -50% for NOx, around -10% for PM10 and below -5% for O3. Small differences were found between the relative changes obtained from normalised data with respect to those from observations. These results highlight the importance of developing an integrated policy to reduce anthropogenic emissions and the need to move towards sustainable mobility to ensure safer air quality levels, as pre-existing concentrations in some cases exceed the safe threshold.es_ES
dc.format.extent18 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© [2021] by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceInt. J. Environ. Res. Public Health 2021, 18(24), 13347es_ES
dc.subject.otherAir Pollutiones_ES
dc.subject.otherCOVID-19es_ES
dc.subject.otherLockdownes_ES
dc.subject.otherDeweatheres_ES
dc.subject.otherMeteorological Normalisationes_ES
dc.subject.otherBoosted Regression Treses_ES
dc.titleMeteorological Normalisation Using Boosted Regression Trees to Estimate the Impact of COVID-19 Restrictions on Air Quality Levelses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://www.mdpi.com/1660-4601/18/24/13347es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/ijerph182413347
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© [2021] by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © [2021] by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.