Mostrar el registro sencillo

dc.contributor.authorGarg, Vaibhav 
dc.contributor.authorRamírez García, David
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-01-27T08:25:35Z
dc.date.available2022-01-27T08:25:35Z
dc.date.issued2021
dc.identifier.isbn978-1-7281-5768-9
dc.identifier.otherTEC2017-92552-EXPes_ES
dc.identifier.otherTEC2017-86921-C2-2-R ; PID2019-104958RB-C43 ; BES-2017-080542es_ES
dc.identifier.urihttp://hdl.handle.net/10902/23801
dc.description.abstractThis paper addresses the problem of source enumeration for arbitrary geometry arrays in the presence of spatially correlated noise. The method combines a sparse reconstruction (SR) step with a subspace averaging (SA) approach, and hence it is named sparse subspace averaging (SSA). In the first step, each received snapshot is approximated by a sparse linear combination of the rest of snapshots. The SR problem is regularized by the logarithm-based surrogate of the l0-norm and solved using a majorization-minimization approach. Based on the SR solution, a sampling mechanism is proposed in the second step to generate a collection of subspaces, all of which approximately span the same signal subspace. Finally, the dimension of the average of this collection of subspaces provides a robust estimate for the number of sources. Our simulation results show that SSA provides robust order estimates under a variety of noise models.es_ES
dc.description.sponsorshipThis work was supported by the Ministerio de Ciencia, Innovación y Universidades under grant TEC2017-92552-EXP (aMBITION), by the Ministerio de Ciencia, Innovación y Universidades, jointly with the European Commission (ERDF), under grants TEC2017-86921-C2-2-R (CAIMAN), PID2019-104958RB-C43 (ADELE), and BES-2017-080542, and by The Comunidad de Madrid under grant Y2018/TCS-4705 (PRACTICO-CM)es_ES
dc.format.extent5 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rights© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE Statistical Signal Processing Workshop (SSP), Río de Janeiro, Brazil, 2021, 411-415es_ES
dc.subject.otherArray processinges_ES
dc.subject.otherSource enumerationes_ES
dc.subject.otherSparse representationes_ES
dc.subject.otherSubspace averaginges_ES
dc.titleSparse subspace averaging for order estimationes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/SSP49050.2021.9513773es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/SSP49050.2021.9513773
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo