• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-output kernel adaptive filtering with reduced complexity

    Ver/Abrir
    MultiOutputKernel.pdf (666.4Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/23800
    DOI: 10.1109/SSP49050.2021.9513779
    ISBN: 978-1-7281-5768-9
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Cuevas Fernández, DiegoAutoridad Unican; Santamaría Caballero, Luis IgnacioAutoridad Unican
    Fecha
    2021
    Derechos
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE Statistical Signal Processing Workshop (SSP), Río de Janeiro, Brazil, 2021, 306-310
    Editorial
    Institute of Electrical and Electronics Engineers, Inc.
    Enlace a la publicación
    https://doi.org/10.1109/SSP49050.2021.9513779
    Palabras clave
    Multi-input multi-output (MIMO) regression
    Kernel adaptive filtering
    Quantized Kernel Least Mean Square (QKLMS)
    Random Fourier features
    Resumen/Abstract
    In this paper, two new multi-output kernel adaptive filtering algorithms are developed that exploit the temporal and spatial correlations among the input-output multivariate time series. They are multi-output versions of the popular kernel least mean squares (KLMS) algorithm with two different sparsification criteria. The first one, denoted as MO-QKLMS, uses the coherence criterion in order to limit the dictionary size. The second one, denoted as MO-RFF-KLMS, uses random Fourier features (RFF) to approximate the kernel functions by linear inner products. Simulation results with synthetic and real data are presented to assess convergence speed, steady-state performance and complexities of the proposed algorithms.
    Colecciones a las que pertenece
    • D12 Congresos [593]
    • D12 Proyectos de Investigación [517]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España