Mostrar el registro sencillo

dc.contributor.authorFerreño Blanco, Diego 
dc.contributor.authorSainz-Aja Guerra, José Adolfo 
dc.contributor.authorCarrascal Vaquero, Isidro Alfonso 
dc.contributor.authorCuartas Hernández, Miguel 
dc.contributor.authorPombo, J
dc.contributor.authorCasado del Prado, José Antonio 
dc.contributor.authorDiego Cavia, Soraya 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-01-14T14:51:44Z
dc.date.available2022-01-14T14:51:44Z
dc.date.issued2021
dc.identifier.issn1742-6588
dc.identifier.issn1742-6596
dc.identifier.urihttp://hdl.handle.net/10902/23736
dc.description.abstractABSTRACT: Train operations generate high impact and fatigue loads that degrade the rail infrastructure and vehicle components. Rail pads are installed between the rails and the sleepers to damp the transmission of vibrations and noise and to provide flexibility to the track. These components play a crucial role to maximize the durability of railway assets and to minimize the maintenance costs. The non-linear mechanical response of this type of materials make it extremely difficult to estimate their mechanical properties, such as the dynamic stiffness. In this work, several machine learning algorithms were used to determine the dynamic stiffness of pads depending on their in-service conditions (temperature, frequency, axle-load and toe-load). 720 experimental tests were performed under different realistic operating conditions; this information was used for the training, validation and testing of the algorithms. It was observed that the optimal algorithm was gradient boosting for EPDM (R2 of 0.995 and mean absolute percentage error of 5.08% in test dataset), TPE (0.994 and 2.32%) and EVA (0.968 and 4.91%) pads. This algorithm was implemented in an application, developed on Microsoft. Net platform, that provides the dynamic stiffness of the pads characterized in this study as function of material, temperature, frequency, axle-load and toe-load.es_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Physicses_ES
dc.rightsAtribución 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceJournal of physics. Conference series 2021, 1765, 1, 012008es_ES
dc.sourceInternational Conference on Graphene and Novel Nanomaterials (GNN) /2nd ; 2020 ; China)es_ES
dc.titleMachine learning algorithms for the prediction of the mechanical properties of railways' rail padses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1088/1742-6596/1765/1/012008es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1088/1742-6596/1765/1/012008
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Atribución 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España