Mostrar el registro sencillo

dc.contributor.authorFister, Iztok
dc.contributor.authorBrest, Janez
dc.contributor.authorIglesias Prieto, Andrés 
dc.contributor.authorGálvez Tomida, Akemi 
dc.contributor.authorDeb, Suash
dc.contributor.authorFister, Iztok Jr
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2022-01-14T14:35:18Z
dc.date.available2022-01-14T14:35:18Z
dc.date.issued2021
dc.identifier.issn2169-3536
dc.identifier.otherTIN2017–89275-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/23734
dc.description.abstractThe authors got the motivation for writing the article based on an issue, with which developers of the newly developed nature-inspired algorithms are usually confronted today: How to select the test benchmark such that it highlights the quality of the developed algorithm most fairly? In line with this, the CEC Competitions on Real-Parameter Single-Objective Optimization benchmarks that were issued several times in the last decade, serve as a testbed for evaluating the collection of nature-inspired algorithms selected in our study. Indeed, this article addresses two research questions: (1) How the selected benchmark affects the ranking of the particular algorithm, and (2) If it is possible to find the best algorithm capable of outperforming all the others on all the selected benchmarks. Ten outstanding algorithms (also winners of particular competitions) from different periods in the last decade were collected and applied to benchmarks issued during the same time period. A comparative analysis showed that there is a strong correlation between the rankings of the algorithms and the benchmarks used, although some deviations arose in ranking the best algorithms. The possible reasons for these deviations were exposed and commented on.es_ES
dc.description.sponsorshipThis work was supported in part by the Slovenian Research Agency (Projects J2-1731 and L7-9421) under Grant P2-0041, in part by the Project PDE-GIR of the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie under Grant 778035, and in part by the Spanish Ministry of Science, Innovation and Universities (Computer Science National Program) of the Agencia Estatal de Investigacion and European Funds EFRD (AEI/FEDER, UE) under Grant TIN2017–89275-R.es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceIEEE Access, 2021, 9, 51166 - 51178es_ES
dc.subject.otherEvolutionary algorithmses_ES
dc.subject.otherBenchmark functionses_ES
dc.subject.otherDifferential evolutiones_ES
dc.titleOn selection of a benchmark by determining the algorithms' qualitieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://doi.org/10.1109/ACCESS.2021.3058285.es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/778035/EU/PDE-based geometric modelling, image processing, and shape reconstruction/PDE-GIR/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89275-R/ES/SWARM INTELLIGENCE PARA MODELADO Y RECONSTRUCCION DE FORMAS EN GRAFICOS POR COMPUTADOR, IMAGENES MEDICAS Y ROBOTICA/es_ES
dc.identifier.DOI10.1109/ACCESS.2021.3058285
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International