Mostrar el registro sencillo

dc.contributor.authorYáñez Díaz, María
dc.contributor.authorOrtiz Sainz de Aja, Alfredo 
dc.contributor.authorGorri Cirella, Daniel 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-12-13T16:00:11Z
dc.date.issued2021-05-13
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.otherCTQ2016-75158-Res_ES
dc.identifier.otherRTI2018-093310-B-I00es_ES
dc.identifier.urihttp://hdl.handle.net/10902/23418
dc.description.abstractThe application of membrane separation processes to industrial hydrogen-rich waste gases promotes the efficient recovery of this clean fuel. The first step to address and overcome this waste of resources is to assess the real performance of commercially available polymeric membranes for hydrogen separation in terms of hydrogen purity that meets the quality standards to be used in hydrogen-based applications. Therefore, this work makes a comparison of the performance of commercial flat hydrogen-selective membranes based on non-porous polymeric materials through the experimental assessment in a lab-scale set up that contains a gas permeation cell with the aim of recovering hydrogen from the most suitable multicomponent waste gaseous streams. To assess the mixed-gas permeation performance, the influence of the feed gas composition, temperature and pressure was examined. The results of experimental tests indicated that there is a strong dependency of H2 permeability on CO2 concentration, that induces a decay of H2/CO2 selectivity in mixed-gas experiments for the membranes under study. Accordingly, the permeability-selectivity trade-off in the state-of-the-art membranes defines the balance between H2 recovery and the product purity. Finally, it is worth noting that although H2 purities obtained are higher than 98% vol. H2 for APG and COG mixtures, which may indeed be used as a commodity chemical in many industrial processes, they are still far from fuel cell requirements.es_ES
dc.description.sponsorshipThis research was supported by the projects CTQ2016-75158-R (AEI/FEDER, UE), RTI2018-093310-B-I00 (MINECO/AEI/FEDER, UE), and PEMFC-SUDOE project (SOE1/P1/E0293 - INTERREG SUDOE/FEDER, UE), “Energy Sustainability at the SUDOE Region: Red PEMFC-SUDOE”.es_ES
dc.format.extent32 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Ltdes_ES
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceInternational Journal of Hydrogen Energy, 2021, 46(33), 17507-17521es_ES
dc.source3rd ANQUE-ICCE International Congress of Chemical Engineering, Santander, 2019es_ES
dc.subject.otherHydrogen separationes_ES
dc.subject.otherIndustrial surplus hydrogenes_ES
dc.subject.otherPolymeric membraneses_ES
dc.subject.otherMixed-gas permeationes_ES
dc.titleComparative performance of commercial polymeric membranes in the recovery of industrial hydrogen waste gas streamses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.ijhydene.2020.04.026es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.ijhydene.2020.04.026
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license