Mostrar el registro sencillo

dc.contributor.authorGonzález Fernández, Cristina 
dc.contributor.authorGómez Pastora, Jenifer 
dc.contributor.authorBringas Elizalde, Eugenio 
dc.contributor.authorZborowski, Maciej
dc.contributor.authorChalmers, Jeffrey J.
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-12-01T18:14:02Z
dc.date.available2021-12-01T18:14:02Z
dc.date.issued2021-11-24
dc.identifier.issn0888-5885
dc.identifier.issn1520-5045
dc.identifier.otherRTI2018-093310-B-I00es_ES
dc.identifier.urihttp://hdl.handle.net/10902/23302
dc.description.abstractThe design of microdevices in which components with magnetic character must be separated and recovered from reactive media benefits from the advantages of microfluidics and meets the criteria for process intensification; however, there are open questions, such as the design of the most appropriate magnet arrangement, that need further research in order to increase the magnetic gradient exerted on the particles. Herein, we focus on the continuous recovery of magnetic microparticles, that can be used as support to facilitate the recovery of biocatalysts (magnetic microcatalysts, MMCs) from biological fluids. We analyze and compare the performance of two typical magnetophoretic microdevices for addressing bead recovery: (i) annular channels with a quadrupole orientation of the permanent magnets (quadrupole magnetic sorter, QMS) and (ii) the standard design, which consists of rectangular channels with a single permanent magnet to generate the magnetic field. To this end, an experimentally validated computational fluid dynamics (CFD) numerical model has been employed. Our results reveal that for devices with the same width and length, the micro QMS, in comparison to a rectangular channel, could accomplish the complete particle retrieval while (i) processing more than 4 times higher fluid velocities, treating more than 360 times higher flow rates or (ii) working with smaller particles, thus reducing by 55% the particle mass. Additionally, the parallel performance of +/-300 micro-QMSs fulfills the processing of flow rates as high as 200 L·h-1 while entirely capturing the magnetic beads. Thereby, this work shows the potential of the QMS advanced design in the intensification of the recovery of catalysts supports of magnetic character.es_ES
dc.description.sponsorshipFinancial support from the Spanish Ministry of Science, Innovation and Universities under the project RTI2018- 093310-B-I00 is gratefully acknowledged. Cristina González-Fernández acknowledges the FPU (FPU18/03525) postgraduate research grants. We also wish to thank the United States National Institutes of Health (1R01HL131720-01A1, CA62349) and the United States Defense Advanced Research Projects Agency (BAA07-21) for financial assistance.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rights© ACS under an ACS AuthorChoice License via Creative Commons Attribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceIndustrial and Engineering Chemistry Research, 2021, 60(46), 16780-16790es_ES
dc.source11th International Symposium on Catalysis in Multiphase Reactors - CAMURE, Milano, 2021es_ES
dc.titleRecovery of magnetic catalysts: advanced design for process intensificationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1021/acs.iecr.1c03474es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1021/acs.iecr.1c03474
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© ACS under an ACS AuthorChoice License via Creative Commons Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como © ACS under an ACS AuthorChoice License via Creative Commons Attribution 4.0 International