Mostrar el registro sencillo

dc.contributor.advisorGallego Gómez, José Luis 
dc.contributor.authorGonzález Carpintero, Adrián
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-11-23T08:58:11Z
dc.date.available2021-11-23T08:58:11Z
dc.date.issued2021-06
dc.identifier.urihttp://hdl.handle.net/10902/23131
dc.description.abstractABSTRACT: Electricity price forecasting provides significant information for the different elec tricity market agents so that their profits can be maximized. This work is meant to make a univariate and multivariate comparison between state-of-the-art statistical models such as ARIMA and Transfer Function Models, and the promising Deep Learn ing models, such as Recurrent Neural Networks and Convolutional Neural Networks, in order to make 24 hours ahead predictions of the electricity price in the Spanish elec tricity market for the 2020 timespan. In addition, an ensembling model composed of models from both backgrounds will be suggested to improve the predictions of either individual model. In the experiments, Convolutional Neural Networks outperformed all other Neural Networks at univariate and multivariate level and had similar results to the state-of-the-art statistical models at univariate level, outperforming them at mul tivariate level. Additionally, it has been shown that the ensembling model obtains considerably better results than each of the individual modelses_ES
dc.format.extent71 p.es_ES
dc.language.isoenges_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.titleNeural networks and arima for short-term electricity price forecastinges_ES
dc.title.alternativeRedes neuronales y arima para la predicción del precio de la electricidad a corto plazoes_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
dc.rights.accessRightsopenAccesses_ES
dc.description.degreeGrado en Economíaes_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Atribución-NoComercial-SinDerivadas 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España