Mostrar el registro sencillo

dc.contributor.authorMartín Jefremovas, Elizabeth 
dc.contributor.authorGandarias, Lucía
dc.contributor.authorRodrigo, Irati
dc.contributor.authorMarcano, Lourdes
dc.contributor.authorGrüttner, Cordula
dc.contributor.authorGarcía, José Ángel
dc.contributor.authorGarayo, Eneko
dc.contributor.authorOrue, Iñaki
dc.contributor.authorGarcía-Prieto, Ana
dc.contributor.authorMuela, Alicia
dc.contributor.authorFernández-Gubieda, María Luisa
dc.contributor.authorAlonso Masa, Javier 
dc.contributor.authorFernández Barquín, Luis 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-11-18T15:15:01Z
dc.date.available2021-11-18T15:15:01Z
dc.date.issued2021-07
dc.identifier.issn2169-3536
dc.identifier.otherMAT2017-83631-C3-Res_ES
dc.identifier.otherRED2018-102626-Tes_ES
dc.identifier.urihttp://hdl.handle.net/10902/23070
dc.description.abstractMagnetic Fluid Hyperthermia mediated by iron oxide nanoparticles is one of the most promising therapies for cancer treatment. Among the different candidates, magnetite and maghemite nanoparticles have revealed to be some of the most promising candidates due to both their performance and their biocompatibility. Nonetheless, up to date, the literature comparing the heating ef ciency of magnetite and maghemite nanoparticles of similar size is scarce. To ll this gap, here we provide a comparison between commercial Synomag Nano owers (pure maghemite) and bacterial magnetosomes (pure magnetite) synthesized by the magnetotactic bacterium Magnetospirillum gryphiswaldense of hDi 40 45 nm. Both types of nanoparticles exhibit a high degree of crystallinity and an excellent degree of chemical purity and stability. The structural and magnetic properties in both nanoparticle ensembles have been studied by means of X Ray Diffraction, Transmission Electron Microscopy, X Ray Absorption Spectroscopy, and SQUID magnetometry. The heating ef ciency has been analyzed in both systems using AC magnetometry at several eld amplitudes (0 88 mT) and frequencies (130, 300, and 530 kHz).es_ES
dc.description.sponsorshipThis work was supported in part by the Spanish "Ministerio de Ciencia, Investigación y Universidades'' under Project MAT2017-83631-C3-R, and in part by the Nanotechnology in Translational Hyperthermia (HIPERNANO) under Grant RED2018-102626-T. The work of Elizabeth M. Jefremovas was supported by the Beca Concepción Arenal through the Gobierno de Cantabria-Universidad de Cantabria under Grant BDNS: 406333. The work of Irati Rodrigo was supported by the Programa de Perfeccionamiento de Personal Investigador Doctor (Gobierno Vasco) under Grant POS-2020-1-0028 and Grant IT-1005-16. The work of Lourdes Marcano was supported by the Postdoctoral Fellowship from the Basque Government under Grant POS-2019-2-0017.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceIEEE Access, vol. 9, pp. 99552-99561, 2021es_ES
dc.titleNanoflowers Versus Magnetosomes: Comparison Between Two Promising Candidates for Magnetic Hyperthermia Therapyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.1109/ACCESS.2021.3096740es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/ACCESS.2021.3096740
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International