Mostrar el registro sencillo

dc.contributor.authorDas, Raja
dc.contributor.authorAlonso Masa, Javier 
dc.contributor.authorKalappattil, Vijaysankar
dc.contributor.authorNemati, Zohreh
dc.contributor.authorRodrigo, Irati
dc.contributor.authorGaraio, Eneko
dc.contributor.authorGarcía, José Ángel
dc.contributor.authorPhan, Manh-Huong
dc.contributor.authorSrikanth, Hariharan
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-11-18T14:52:31Z
dc.date.available2021-11-18T14:52:31Z
dc.date.issued2021-05-24
dc.identifier.issn2079-4991
dc.identifier.otherMAT2017-83631- C3es_ES
dc.identifier.urihttp://hdl.handle.net/10902/23069
dc.description.abstractMagnetic interactions can play an important role in the heating efficiency of magnetic nanoparticles. Although most of the time interparticle magnetic interactions are a dominant source, in specific cases such as multigranular nanostructures intraparticle interactions are also relevant and their effect is significant. In this work, we have prepared two different multigranular magnetic nanostructures of iron oxide, nanorings (NRs) and nanotubes (NTs), with a similar thickness but different lengths (55 nm for NRs and 470 nm for NTs). In this way, we find that the NTs present stronger intraparticle interactions than the NRs. Magnetometry and transverse susceptibility measurements show that the NTs possess a higher effective anisotropy and saturation magnetization. Despite this, the AC hysteresis loops obtained for the NRs (0?400 Oe, 300 kHz) are more squared, therefore giving rise to a higher heating efficiency (maximum specific absorption rate, SARmax = 110 W/g for the NRs and 80 W/g for the NTs at 400 Oe and 300 kHz). These results indicate that the weaker intraparticle interactions in the case of the NRs are in favor of magnetic hyperthermia in comparison with the NTs.es_ES
dc.description.sponsorshipThis research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED), grant number 103.02-2019.314. The Spanish Government is acknowledged for the “Nanotechnology in translational hyperthermia (HIPERNANO)” research network (RED2018-102626-T) and for funding under the project number MAT2017-83631-C3. Research at USF was supported by US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, Award No. DE-FG02-07ER46438. Basque Government is also acknowledged for funding under the project number IT-1005-16 and for the postdoctoral fellowship POS_2020_1_0028.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceNanomaterials 2021, 11, 1380es_ES
dc.titleIron Oxide Nanorings and Nanotubes for Magnetic Hyperthermia: The Problem of Intraparticle Interactionses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/nano11061380
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International