Mostrar el registro sencillo

dc.contributor.authorCasas Rentería, Eduardo 
dc.contributor.authorMateos Alberdi, Mariano 
dc.contributor.authorRösch, Arnd
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-11-17T07:37:26Z
dc.date.available2021-11-17T07:37:26Z
dc.date.issued2021-10
dc.identifier.issn0029-599X
dc.identifier.issn0945-3245
dc.identifier.otherMTM2017-83185-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/23027
dc.description.abstractWe analyze the numerical approximation of a control problem governed by a non-monotone and non-coercive semilinear elliptic equation. The lack of monotonicity and coercivity is due to the presence of a convection term. First, we study the finite element approximation of the partial differential equation. While we can prove existence of a solution for the discrete equation when the discretization parameter is small enough, the uniqueness is an open problem for us if the nonlinearity is not globally Lipschitz. Nevertheless, we prove the existence and uniqueness of a sequence of solutions bounded in L ထ (Ω) and converging to the solution of the continuous problem. Error estimates for these solutions are obtained. Next, we discretize the control problem. Existence of discrete optimal controls is proved, as well as their convergence to solutions of the continuous problem. The analysis of error estimates is quite involved due to the possible non-uniqueness of the discrete state for a given control. To overcome this difficulty we define an appropriate discrete control-to-state mapping in a neighbourhood of a strict solution of the continuous control problem. This allows us to introduce a reduced functional and obtain first order optimality conditions as well as error estimates. Some numerical experiments are included to illustrate the theoretical results.es_ES
dc.description.sponsorshipThe first two authors were partially supported by the Spanish Ministerio de Economía, Industria y Competitividad under project MTM2017-83185-Pes_ES
dc.format.extent36 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer New York LLCes_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceNumerische Mathematik, 2021, 149(2), 305-340es_ES
dc.titleNumerical approximation of control problems of non-monotone and non-coercive semilinear elliptic equationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s00211-021-01222-7es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/s00211-021-01222-7
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International