• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Regression models for outlier identification (Hurricanes and typhoons) in wave hindcast databases

    Ver/Abrir
    RegressionModelsforO ... (12.82Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/22812
    DOI: 10.1175/JTECH-D-11-00059.1
    ISSN: 0739-0572
    ISSN: 1520-0426
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Mínguez Solana, Roberto; González Reguero, Borja; Luceño Vázquez, AlbertoAutoridad Unican; Méndez Incera, Fernando JavierAutoridad Unican
    Fecha
    2012-02
    Derechos
    © 2012 American Meteorological Society. AMS´s Full Copyright Notice: https://www.ametsoc.org/ams/index.cfm/publications/authors/journal-and-bams-authors/author-resources/copyright-information/copyright-policy/
    Publicado en
    Journal of Atmospheric and Oceanic Technology, 2012, 29(2), 267-285
    Editorial
    American Meteorological Society
    Enlace a la publicación
    https://journals.ametsoc.org/view/journals/atot/29/2/jtech-d-11-00059_1.xml
    Resumen/Abstract
    ABSTRACT: he development of numerical wave prediction models for hindcast applications allows a detailed description of wave climate in locations where long-term instrumental records are not available. Wave hindcast databases (WHDBs) have become a powerful tool for the design of offshore and coastal structures, offering important advantages for the statistical characterization of wave climate all over the globe (continuous time series, wide spatial coverage, constant time span, homogeneous forcing, and more than 60-yr-long time series). However, WHDBs present several deficiencies reported in the literature. One of these deficiencies is related to typhoons and hurricanes, which are inappropriately reproduced by numerical models. The main reasons are (i) the difficulty of specifying accurate wind fields during these events and (ii) the insufficient spatiotemporal resolution used. These difficulties make the data related to these events appear as "outliers" when compared with instrumental records. These bad data distort results from calibration and/or correction techniques. In this paper, several methods for detecting the presence of typhoons and/or hurricane data are presented, and their automatic outlier identification capabilities are analyzed and compared. All the methods are applied to a global wave hindcast database and results are compared with existing hurricane and buoy databases in the Gulf of Mexico, Caribbean Sea, and North Atlantic Ocean.
    Colecciones a las que pertenece
    • D05 Artículos [283]
    • D20 Artículos [468]
    • D56 Artículos [333]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España