dc.contributor.advisor | Fernández Fernández, Luis Alberto | |
dc.contributor.advisor | Fernández Troyano, Juan Carlos | |
dc.contributor.author | Cobo Carrilo, Marcos | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2021-10-20T16:31:58Z | |
dc.date.available | 2021-10-20T16:31:58Z | |
dc.date.issued | 2021-06-25 | |
dc.identifier.uri | http://hdl.handle.net/10902/22794 | |
dc.description.abstract | RESUMEN: El filtro de Kalman es un algoritmo recursivo desarrollado por Rudolf E. Kalman en 1960 que sirve para poder identificar el estado de un sistema dinámico lineal discreto, en presencia de ruido aleatorio. Fue un componente fundamental del sistema de guiado y estabilización del módulo incluido en el Apolo XI (primera nave tripulada en llegar a la Luna en 1969) y desde entonces, su interés y rango de aplicaciones se ha extendido a muchos otros campos. En este TFG deduciremos rigurosamente las ecuaciones que modelan el filtro de Kalman para, posteriormente, diseñar nuestro propio filtro de Kalman atendiendo al objetivo de filtrar y predecir los movimientos de un activo financiero, más en concreto, pares de divisas dentro del mercado FOREX. Desarrollaremos una estrategia fundamentada en el filtro de Kalman y comprobaremos los rendimientos obtenidos de operar con ella en distintos pares de divisas a lo largo de los últimos dos años. Finalmente, extraeremos algunas conclusiones del potencial que posee el filtro de Kalman dentro del campo de la economía, y en concreto, dentro del mundo de las inversiones. | es_ES |
dc.description.abstract | ABSTRACT: The Kalman filter is a recursive algorithm developed by Rudolf E. Kalman in 1960 to identify the state of a discrete linear dynamic system in the presence of random noise. It was a fundamental component of the guidance and stabilisation system of the Apollo XI lander (the first manned spacecraft to reach the Moon in 1969) and since then, its interest and range of applications has been extended to many other fields. In this project we will rigorously derive the equations that model the Kalman filter to, subsequently, design our own Kalman filter with the objective of filtering and predicting the movements of a financial asset, more specifically, currency pairs within the FOREX market. We will develop a strategy based on the Kalman filter and we will check the returns obtained from trading with it on different currency pairs over the last two years. Finally, we will draw some conclusions about the potential of the Kalman filter in the field of economics, and in particular, in the world of investments. | es_ES |
dc.format.extent | 69 p. | es_ES |
dc.language.iso | spa | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject.other | Filtro de Kalman | es_ES |
dc.subject.other | Matriz de covarianza | es_ES |
dc.subject.other | Error cuadrático medio | es_ES |
dc.subject.other | Regularización de Tikhonov, | es_ES |
dc.subject.other | Ánálisis técnico, | es_ES |
dc.subject.other | Bandas de Bollinger | es_ES |
dc.subject.other | FOREX | es_ES |
dc.subject.other | Python | es_ES |
dc.subject.other | BackTesting | es_ES |
dc.subject.other | Kalman filter | es_ES |
dc.subject.other | Covariance matrix | es_ES |
dc.subject.other | Mean squared error | es_ES |
dc.subject.other | Tikhonov regularization | es_ES |
dc.subject.other | Technical analysis | es_ES |
dc.subject.other | Bollinger bands | es_ES |
dc.subject.other | FOREX | es_ES |
dc.subject.other | Python | es_ES |
dc.subject.other | BackTesting | es_ES |
dc.title | El filtro de Kalman con aplicaciones en inversiones | es_ES |
dc.title.alternative | The Kalman filter with investment applications | es_ES |
dc.type | info:eu-repo/semantics/bachelorThesis | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.description.degree | Grado en Matemáticas | es_ES |