State error estimates for the numerical approximation of sparse distributed control problems in the absence of Tikhonov regularization
Registro completo
Mostrar el registro completo DCFecha
2021-09Derechos
© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore. This is a post-peer-review, pre-copyedit version of an article published in Vietnam Journal of Mathematics. The final authenticated version is available online at: https://doi.org/10.1007/s10013-021-00491-x
Publicado en
Vietnam Journal of Mathematics, 2021, 49(3), 713-738 - (CORRIGENDUM), 2023, 51(2), 565-566
Editorial
Springer Science + Business Media
Enlace a la publicación
Palabras clave
Optimal control
Bang-bang controls
Semilinear elliptic equations
Optimality conditions
Error estimates
Resumen/Abstract
In this paper, we analyze optimal control problems of semilinear elliptic equations, where the controls are distributed. Box constraints for the controls are imposed and the cost functional does not involve the control itself, except possibly for a non-differentiable sparsity-promoting term. Under appropriate second order sufficient optimality conditions, first we estimate the difference between the dis crete and continuous optimal states. Next, under an additional assumption on the optimal adjoint state, we prove error estimates for the controls and improve the estimates for the states.
Colecciones a las que pertenece
- D20 Artículos [473]
- D20 Proyectos de Investigación [332]