Local duality for Banach spaces
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2017-06Derechos
© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Publicado en
Expositiones Mathematicae, 2015, 33(2), 135-183
Editorial
Urban und Fischer
Elsevier
Enlace a la publicación
Resumen/Abstract
A local dual of a Banach space X is a subspace of the dual X* which can replace the whole dual space when dealing with finite dimensional subspaces. This notion arose as a development of the principle of local reflexivity, and it is very useful when a description of X* is not available. We give an exposition of the theory of local duality for Banach spaces, including the main properties, examples and applications, and comparing the notion of local dual with some other weaker properties of the subspaces of the dual of a Banach space.
Colecciones a las que pertenece
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]