Mostrar el registro sencillo

dc.contributor.authorCasas Rentería, Eduardo 
dc.contributor.authorKunisch, Karl
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-07-01T08:15:10Z
dc.date.available2021-07-01T08:15:10Z
dc.date.issued2021-06-18
dc.identifier.issn1292-8119
dc.identifier.issn1262-3377
dc.identifier.otherMTM2017-83185-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/21928
dc.description.abstractExistence and uniqueness of solutions to the Navier-Stokes equations in dimension two with forces in the space Lq((0, T ); W−1,p(Ω)) for p and q in appropriate parameter ranges are proven. The case of spatially measured-valued forces is included. For the associated Stokes equation the well- posedness results are verified in arbitrary dimensions for any 1 < p, q < ∞.es_ES
dc.description.sponsorshipThe fisrst author was partially supported by Spanish Ministerio de Economía y Competitividad under research project MTM2017-83185-P.es_ES
dc.format.extent25 p.es_ES
dc.language.isoenges_ES
dc.publisherEDP Scienceses_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceESAIM - Control, Optimisation and Calculus of Variations, 2021, 27, 61 - (CORRIGENDUM), 2022, 28, 28es_ES
dc.subject.otherEvolution Navier-Stokes equationses_ES
dc.subject.otherWeak solutionses_ES
dc.subject.otherUniqueness clasesses_ES
dc.subject.otherSensitivity analysises_ES
dc.subject.otherAsymptotic stabilityes_ES
dc.titleWell-posedness of evolutionary Navier-Stokes equations with forces of low regularity on two-dimensional domainses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1051/cocv/2021058es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1051/cocv/2021058
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International