dc.contributor.author | Casas Rentería, Eduardo | |
dc.contributor.author | Kunisch, Karl | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2021-07-01T08:15:10Z | |
dc.date.available | 2021-07-01T08:15:10Z | |
dc.date.issued | 2021-06-18 | |
dc.identifier.issn | 1292-8119 | |
dc.identifier.issn | 1262-3377 | |
dc.identifier.other | MTM2017-83185-P | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/21928 | |
dc.description.abstract | Existence and uniqueness of solutions to the Navier-Stokes equations in dimension two with forces in the space Lq((0, T ); W−1,p(Ω)) for p and q in appropriate parameter ranges are proven. The case of spatially measured-valued forces is included. For the associated Stokes equation the well- posedness results are verified in arbitrary dimensions for any 1 < p, q < ∞. | es_ES |
dc.description.sponsorship | The fisrst author was partially supported by Spanish Ministerio de Economía y Competitividad under research project MTM2017-83185-P. | es_ES |
dc.format.extent | 25 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | EDP Sciences | es_ES |
dc.rights | Attribution 4.0 International | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | ESAIM - Control, Optimisation and Calculus of Variations, 2021, 27, 61 - (CORRIGENDUM), 2022, 28, 28 | es_ES |
dc.subject.other | Evolution Navier-Stokes equations | es_ES |
dc.subject.other | Weak solutions | es_ES |
dc.subject.other | Uniqueness clasess | es_ES |
dc.subject.other | Sensitivity analysis | es_ES |
dc.subject.other | Asymptotic stability | es_ES |
dc.title | Well-posedness of evolutionary Navier-Stokes equations with forces of low regularity on two-dimensional domains | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1051/cocv/2021058 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1051/cocv/2021058 | |
dc.type.version | publishedVersion | es_ES |