• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling and synthesis of breast cancer optical property signatures with generative models

    Ver/Abrir
    ModelingandSynthesis ... (29.29Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/21833
    DOI: 10.1109/TMI.2021.3064464
    ISSN: 0278-0062
    ISSN: 1558-254X
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Pardo Franco, ArturoAutoridad Unican; Streeter, Samuel S.; Maloney, Benjamin W.; Gutiérrez Gutiérrez, José AlbertoAutoridad Unican; McClatchy, David M.; Wells, Wendy A.; Paulsen, Keith D.; López Higuera, José MiguelAutoridad Unican; Pogue, Brian William; Conde Portilla, Olga MaríaAutoridad Unican
    Fecha
    2021-06
    Derechos
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE Transactions on Medical Imaging, 2021, 40(6), 1687-1701
    Editorial
    Institute of Electrical and Electronics Engineers Inc.
    Enlace a la publicación
    https://doi.org/10.1109/TMI.2021.3064464
    Palabras clave
    Biomedical optical imaging
    Breast cancer
    Tissue optical properties
    Modeling
    Pathology
    Deep learning
    Dimensionality reduction
    Variational autoencoder
    Convolutional neural networks
    Resumen/Abstract
    Is it possible to find deterministic relationships between optical measurements and pathophysiology in an unsupervised manner and based on data alone? Optical property quantification is a rapidly growing biomedical imaging technique for characterizing biological tissues that shows promise in a range of clinical applications, such as intraoperative breast-conserving surgery margin assessment. However, translating tissue optical properties to clinical pathology information is still a cumbersome problem due to, amongst other things, inter- and intrapatient variability, calibration, and ultimately the nonlinear behavior of light in turbid media. These challenges limit the ability of standard statistical methods to generate a simple model of pathology, requiring more advanced algorithms. We present a data-driven, nonlinear model of breast cancer pathology for real-time margin assessment of resected samples using optical properties derived from spatial frequency domain imaging data. A series of deep neural network models are employed to obtain sets of latent embeddings that relate optical data signatures to the underlying tissue pathology in a tractable manner. These self-explanatory models can translate absorption and scattering properties measured from pathology, while also being able to synthesize new data. The method was tested on a total of 70 resected breast tissue samples containing 137 regions of interest, achieving rapid optical property modeling with errors only limited by current semi-empirical models, allowing for mass sample synthesis and providing a systematic understanding of dataset properties, paving the way for deep automated margin assessment algorithms using structured light imaging or, in principle, any other optical imaging technique seeking modeling. Code is available.
    Colecciones a las que pertenece
    • D50 Artículos [312]
    • D50 Proyectos de Investigación [404]
    • IDIVAL Artículos [864]
    • IDIVAL Proyectos de investigación [191]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España