Mostrar el registro sencillo

dc.contributor.authorAlonso Ipiña, Alain 
dc.contributor.authorLázaro Urrutia, Mariano 
dc.contributor.authorLázaro Urrutia, Pedro Gervasio 
dc.contributor.authorLázaro Urrutia, David 
dc.contributor.authorAlvear Portilla, Manuel Daniel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-05-28T13:48:56Z
dc.date.available2021-05-28T13:48:56Z
dc.date.issued2019-11
dc.identifier.issn1388-6150
dc.identifier.issn1588-2926
dc.identifier.otherRTC-2017-6066-8es_ES
dc.identifier.urihttp://hdl.handle.net/10902/21782
dc.description.abstractThermal analysis techniques play a crucial role to characterize solid-phase thermal decomposition, since it provides information about how mass is lost (thermal gravimetric analysis) and energy released [differential scanning calorimetry (DSC)]. However, most of the input thermal parameters and kinetic properties to be used in fire computer modelling cannot be obtained directly from those tests. Early works looked forward achieving those parameters employing indirect fitting methods, which enable the user to obtain a set of parameters capable of simulating accurately the mass loss curve (TG) or its derivative (DTG). This work aims to study the possibility of adding the energy released as a new target in the process, applying the analysis to linear low-density polyethylene. Results obtained in the present work reveal the major challenge of getting a set of parameters that can also fit DSC curve. The level of accuracy of the fitting to TG curve is higher than to DSC curve. This fact increases the value of the errors when both curves are used as targets to approach. As a result, this paper includes an alternative to consider the effects of the DSC curve.es_ES
dc.description.sponsorshipThe authors would like to thank to the Consejo de Seguridad Nuclear for the cooperation and co-financing the project ‘‘Simulation of fires in nuclear power plants’’ and to CAFESTO Project funded by the Spanish Ministry of Science, Innovation and Universities and the Spanish State Research Agency through public–private partnerships (Retos Colaboración 2017 call, ref RTC-2017-6066-8) co-funded by ERDF under the objective ‘‘Strengthening research, technological development and innovation’’.es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Netherlandses_ES
dc.rights© Springer. This is a post-peer-review, pre-copyedit version of an article published in Journal of Thermal Analysis and Calorimetry. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10973-019-08199-4es_ES
dc.sourceJournal of Thermal Analysis and Calorimetry, 2019, 138(4), 2703-2713es_ES
dc.subject.otherThermal analysises_ES
dc.subject.otherThermal decompositiones_ES
dc.subject.otherFire computer modelses_ES
dc.subject.otherOptimization methodses_ES
dc.subject.otherLLDPEes_ES
dc.titleLLDPE kinetic properties estimation combining thermogravimetry and differential scanning calorimetry as optimization targetses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s10973-019-08199-4es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/s10973-019-08199-4
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo