dc.contributor.author | Bae, Hantaek | |
dc.contributor.author | Granero Belinchón, Rafael | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2021-04-30T16:09:15Z | |
dc.date.available | 2022-07-01T23:19:35Z | |
dc.date.issued | 2021-06 | |
dc.identifier.issn | 1040-7294 | |
dc.identifier.issn | 1572-9222 | |
dc.identifier.uri | http://hdl.handle.net/10902/21545 | |
dc.description.abstract | In this paper, we deal with two logarithmic fourth order differential equations: the extended one-dimensional DLSS equation and its multi-dimensional analog. We show the global existence of solution in critical spaces, its convergence to equilibrium and the gain of spatial analyticity for these two equations in a unified way. | es_ES |
dc.format.extent | 17 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.rights | © Springer. This is a post-peer-review, pre-copyedit version of an article published in Journal of Dynamics and Differential Equations. The final authenticated version is available online at: https://doi.org/10.1007/s10884-020-09852-5 | es_ES |
dc.source | Journal of Dynamics and Differential Equations, volume 33 (2021), pp. 1135-1151 | es_ES |
dc.subject.other | Derrida–Lebowitz–Speer–Spohn equation | es_ES |
dc.subject.other | Wiener space | es_ES |
dc.subject.other | Existence of solution | es_ES |
dc.subject.other | Asymptotic behavior | es_ES |
dc.subject.other | Analyticity | es_ES |
dc.title | Global Existence and Exponential Decay to Equilibrium for DLSS-Type Equations | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1007/s10884-020-09852-5 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.type.version | acceptedVersion | es_ES |