Mostrar el registro sencillo

dc.contributor.authorNearing, Grey S.
dc.contributor.authorKratzert, Frederik
dc.contributor.authorSampson, Alden Keefe
dc.contributor.authorPelissier, Craig S.
dc.contributor.authorKlotz, Daniel
dc.contributor.authorFrame, Jonathan M.
dc.contributor.authorPrieto Sierra, Cristina
dc.contributor.authorGupta, Hoshin V.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-04-20T07:37:32Z
dc.date.available2021-10-01T02:45:11Z
dc.date.issued2021-03
dc.identifier.issn0043-1397
dc.identifier.issn1944-7973
dc.identifier.urihttp://hdl.handle.net/10902/21352
dc.description.abstractABSTRACT: This paper is derived from a keynote talk given at the Google's 2020 Flood Forecasting Meets Machine Learning Workshop. Recent experiments applying deep learning to rainfall‐runoff simulation indicate that there is significantly more information in large‐scale hydrological data sets than hydrologists have been able to translate into theory or models. While there is a growing interest in machine learning in the hydrological sciences community, in many ways, our community still holds deeply subjective and nonevidence‐based preferences for models based on a certain type of “process understanding” that has historically not translated into accurate theory, models, or predictions. This commentary is a call to action for the hydrology community to focus on developing a quantitative understanding of where and when hydrological process understanding is valuable in a modeling discipline increasingly dominated by machine learning. We offer some potential perspectives and preliminary examples about how this might be accomplished.es_ES
dc.format.extent15 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Geophysical Uniones_ES
dc.rights© American Geophysical Uniones_ES
dc.sourceWater Resources Research Volume 57, Issue 3 03e2020WR028091es_ES
dc.titleWhat Role Does Hydrological Science Play in the Age of Machine Learning?es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1029/2020WR028091
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo