Mostrar el registro sencillo

dc.contributor.authorOrtiz Martínez, Víctor Manuel
dc.contributor.authorGómez Coma, Lucía 
dc.contributor.authorPérez García, Gema 
dc.contributor.authorOrtiz Sainz de Aja, Alfredo 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-04-07T16:21:40Z
dc.date.available2022-12-31T00:13:43Z
dc.date.issued2020-12-01
dc.identifier.issn1383-5866
dc.identifier.issn1873-3794
dc.identifier.otherRTI2018-093310-B-I00es_ES
dc.identifier.urihttp://hdl.handle.net/10902/21170
dc.description.abstractRedox flow batteries (RFBs) have emerged as a prominent option for the storage of intermittent renewable energy in large and medium-scale applications. In comparison to conventional batteries, these systems offer the unique advantage of decoupling energy and power densities, which can be separately scaled. Flowing liquid electrolytes, stored in external adjacent tanks to the cell stack, allow the reversible conversion of chemical energy into electricity by exploiting the difference in oxidation states between electroactive species. RFBs are at an early stage of commercialization, but the energy density is still low for the widespread use and full implementation. The attractive physicochemical properties of ionic liquids (ILs), with adventurous electrochemical features over aqueous and organic electrolytes, have drawn growing interest for their use in energy devices. Due to their versatility, ILs can be applied in the main components of RFBs, showing great potential for the further development of the technology. For the first time, this work reviews the recent progress on the application of IL materials in RFBs, discussing their roles as i) supportive electrolytes and additives, ii) redox reaction media, iii) redox-active species and iv) electrolyte membranes. The advantages and limitations of the multiple functionalities of ILs in RFBs are detailed, underlining the promising prospects and future research trends in the field.es_ES
dc.description.sponsorshipThis work has been supported by the projects RTI2018-093310-B-I00 (MCIU/AEI/FEDER, UE) and SOE1/P1/E0293 (INTERREGSUDOE /FEDER, UE), "Energy Sustainability at the Sudoe Region: Red PEMFC-Sudoe‟.es_ES
dc.format.extent48 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSeparation and Purification Technology, 2020, 252, 117436es_ES
dc.subject.otherRedox flow batterieses_ES
dc.subject.otherIonic liquidses_ES
dc.subject.otherElectrolytees_ES
dc.subject.otherEnergy efficiencyes_ES
dc.subject.otherRedox coupleses_ES
dc.subject.otherRenewable energyes_ES
dc.subject.otherIon exchange membranees_ES
dc.titleThe roles of ionic liquids as new electrolytes in redox flow batterieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.seppur.2020.117436es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.seppur.2020.117436
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license