Mostrar el registro sencillo

dc.contributor.authorPontón Lobete, María Isabel 
dc.contributor.authorRamírez Terán, Franco Ariel 
dc.contributor.authorHerrera Guardado, Amparo 
dc.contributor.authorSuárez Rodríguez, Almudena 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-03-26T11:37:14Z
dc.date.available2021-03-26T11:37:14Z
dc.date.issued2020-06
dc.identifier.issn0018-9480
dc.identifier.issn1557-9670
dc.identifier.otherTEC2017-88242-C3-1-Res_ES
dc.identifier.otherTEC2017-88242-C3-2-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/21102
dc.description.abstractThis article presents a new formulation to predict the steady-state, stability, and phase-noise properties of oscillator circuits, including either a self-injection network or a two-port feedback network for phase-noise reduction. The additional network contains a slow wave structure that stabilizes the oscillation signal. Its long delay inherently gives rise to multivalued solutions in some parameter intervals, which should be avoided for a reliable operation. Under a two-port feedback network, the circuit is formulated extracting two outer-tier admittance functions, which depend on the node-voltage amplitudes, phase shift between the two nodes, and excitation frequency. Then, the effect of the slow wave structure is predicted through an analytical formulation of the augmented oscillator, which depends on the numerical oscillator model and the structure admittance matrix. The solution curves are obtained in a straightforward manner by tracing a zero-error contour in the plane defined by the analysis parameter and the oscillation frequency. The impact of the slow-wave structure on the oscillator stability and noise properties is analyzed through a perturbation method, applied to the augmented oscillator. The phase-noise dependence on the group delay is investigated calculating the modulation of the oscillation carrier. The various analysis and design methods have been applied to an oscillator at 2.73 GHz, which has been manufactured and measured, obtaining phase-noise reductions of 13 dB, under a one-port load network, and 18 dB, under a feedback network.es_ES
dc.description.sponsorshipThis work was supported by the Spanish Ministry of Economy ans Competitiveness through the European Regional Development Fund(ERDf)/ Fondo Europeo de Desarrollo Regional (FEDER) and under Project TEC2017-88242-C3-(1/2)-R.es_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers Inc.es_ES
dc.rights© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE Transactions on Microwave Theory and Techniques, 2020, 68(6), 2358-2373es_ES
dc.sourceIEEE MTT-S International Microwave Symposium (IMS), Boston, USA, 2019
dc.source
dc.subject.otherOscillatores_ES
dc.subject.otherPhase-noisees_ES
dc.subject.otherSlow-wave structurees_ES
dc.subject.otherStabilityes_ES
dc.titleOscillator stabilization through feedback with slow wave structureses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/TMTT.2020.2971186es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/TMTT.2020.2971186
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo