Mostrar el registro sencillo

dc.contributor.authorTristán Teja, Carolina 
dc.contributor.authorFallanza Torices, Marcos 
dc.contributor.authorIbáñez Mendizábal, Raquel 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-03-16T13:04:11Z
dc.date.available2022-12-31T00:13:31Z
dc.date.issued2020-12-15
dc.identifier.issn0011-9164
dc.identifier.otherRTI2018-093310-B-I00es_ES
dc.identifier.otherCTM2017-87850-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/20999
dc.description.abstractSalinity gradient energy (SGE) capture by reverse electrodialysis (RED) is an emerging technology to advance the phaseout of conventional water-intensive energy sources in desalination industry. This paper assesses SGE recovery potential of an up-scaled RED system in seawater reverse osmosis (SWRO) desalination plants. Using a detailed RED system's model (i) we conducted a parametric evaluation of feed's concentration, feed's flow rate, and temperature to identify the optimal working conditions of an industrial-scale RED unit; (ii) we estimated SGE recovery of a RED plant in SWRO plants distributed worldwide, adopting a single-stage arrangement of the RED units; (iii) finally, to enhance energy yield, we examined different RED plant's layouts in a specific SWRO plant. The results underline the merits of this modelling tool to assist SGE-RED implementation in the utmost scenarios. Regarding RED plant's layout, findings reveal that the series-parallel arrangement of the RED units improves the power output and energy yield of the system but requires more RED units. Hence, a systematic evaluation through optimization of the hybrid process's configuration both at plant's scale and at RED unit's scale is needed to properly determine RED's SGE recovery potential from waste streams in SWRO plants.es_ES
dc.description.sponsorshipThis work was supported by the Community of Cantabria - Regional Plan through the project Gradisal (RM16-XX-046-SODERCAN/FEDER); and the Spanish Ministry of Science, Innovation and Universities (RTI2018-093310-B-I00 and CTM2017-87850-R). Carolina Tristán is supported by the Spanish Ministry of Science, Innovation and Universities (FPI grant PRE2018-086454).es_ES
dc.format.extent39 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceDesalination, 2020, 496, 114699es_ES
dc.subject.otherNet power densityes_ES
dc.subject.otherEnergy yieldes_ES
dc.subject.otherPlant layoutes_ES
dc.subject.otherSpecific energy consumptiones_ES
dc.subject.otherRED multi-scale modeles_ES
dc.titleRecovery of salinity gradient energy in desalination plants by reverse electrodialysises_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.desal.2020.114699es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.desal.2020.114699
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license