Mostrar el registro sencillo

dc.contributor.authorTristán Teja, Carolina 
dc.contributor.authorRumayor Villamil, Marta 
dc.contributor.authorDomínguez Ramos, Antonio 
dc.contributor.authorFallanza Torices, Marcos 
dc.contributor.authorIbáñez Mendizábal, Raquel 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-03-16T12:51:27Z
dc.date.available2021-08-31T02:47:32Z
dc.date.issued2020-08-01
dc.identifier.issn2398-4902
dc.identifier.otherRTI2018-093310-B-I00es_ES
dc.identifier.otherCTM2017-87850-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/20998
dc.description.abstractSalinity gradient energy capture by reverse electrodialysis (SGE-RED) can play a part in the shift away from fossil fuels towards a carbon-neutral renewable energy supply; however, like other renewable power technologies, SGE-RED environmental soundness hinges on its whole life-cycle environmental loads. This study surveys the Life Cycle Assessment of SGE-RED technology. We quantified (i) the environmental loads per 1.0 kW h generated by a stand-alone RED unit and then, (ii) the environmental burdens related to the energy provision from an up-scaled RED system to a seawater reverse osmosis (SWRO) desalination plant per 1.0 m3 of desalted water. The RED unit's assessment results show that SGE-RED is environmentally competitive with other renewable sources such as photovoltaics or wind. Regarding the component's contribution analysis, the spacer's fabric material drives the RED environmental burden as the number of cell pairs is increased. The scaling-up of the RED unit, however, improves its full environmental profile. Preliminary results of SGE-RED combination with a SWRO plant suggest that the energy harnessed from SWRO's concentrate streams by RED could enhance the environmental performance of the desalination industry. Further research is required to identify SWRO-RED design alternatives that minimize the life cycle burden while still yielding good technical and economic performance.es_ES
dc.description.sponsorshipThis work was supported by the Community of Cantabria - Regional Plan through the project Gradisal (RM16-XX-046-SODERCAN/FEDER); and the Spanish Ministry of Science, Innovation and Universities (RTI2018-093310-B-I00 and CTM2017-87850-R). Carolina Tristán is supported by the Spanish Ministry of Science, Innovation and Universities (FPI grant PRE2018-086454). The authors also thank Fumatech for providing information on IEMs properties.es_ES
dc.format.extent38 p.es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rights© Royal Society of Chemistryes_ES
dc.sourceSustainable Energy and Fuels, 2020, 4(8), 4273-4284es_ES
dc.titleLife cycle assessment of salinity gradient energy recovery by reverse electrodialysis in a seawater reverse osmosis desalination plantes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1039/D0SE00372Ges_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1039/d0se00372g
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo