Mostrar el registro sencillo

dc.contributor.authorPardo Franco, Arturo 
dc.contributor.authorGutiérrez Gutiérrez, José Alberto 
dc.contributor.authorStreeter, Samuel S.
dc.contributor.authorMaloney, Benjamin W.
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.authorPogue, Brian Wiliam
dc.contributor.authorConde Portilla, Olga María 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-03-04T16:06:03Z
dc.date.available2021-03-04T16:06:03Z
dc.date.issued2020-04-01
dc.identifier.issn0277-786X
dc.identifier.issn1996-756X
dc.identifier.otherFIS2010-19860es_ES
dc.identifier.otherTEC2016-76021-C2-2-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/20859
dc.description.abstractWith an adequate tissue dataset, supervised classification of tissue optical properties can be achieved in SFDI images of breast cancer lumpectomies with deep convolutional networks. Nevertheless, the use of a black-box classifier in current ex vivo setups provides output diagnostic images that are inevitably bound to show misclassified areas due to inter- and intra-patient variability that could potentially be misinterpreted in a real clinical setting. This work proposes the use of a novel architecture, the self-introspective classifier, where part of the model is dedicated to estimating its own expected classification error. The model can be used to generate metrics of self-confidence for a given classification problem, which can then be employed to show how much the network is familiar with the new incoming data. A heterogenous ensemble of four deep convolutional models with self-confidence, each sensitive to a different spatial scale of features, is tested on a cohort of 70 specimens, achieving a global leave-one-out cross-validation accuracy of up to 81%, while being able to explain where in the output classification image the system is most confident.es_ES
dc.description.sponsorshipSpanish Ministry of Science, Innovation and Universities (FIS2010-19860, TEC2016-76021-C2-2-R), Spanish Ministry of Economy, Industry and Competitiveness and Instituto de Salud Carlos III (DTS17-00055, DTS15- 00238), Instituto de Investigación Valdecilla (INNVAL16/02, INNVAL18/23), Spanish Ministry of Education, Culture, and Sports (FPU16/05705).es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.publisherSPIE Society of Photo-Optical Instrumentation Engineerses_ES
dc.rights© 2020 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.es_ES
dc.sourceProceedings of SPIE, 2020, 11362, 113620Ies_ES
dc.sourceClinical Biophotonics Conference, France (Online), 2020es_ES
dc.titleAutomated surgical margin assessment in breast conserving surgery using SFDI with ensembles of self-confident deep convolutional networkses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1117/12.2554965es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1117/12.2554965
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo