• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automated surgical margin assessment in breast conserving surgery using SFDI with ensembles of self-confident deep convolutional networks

    Ver/Abrir
    AutomatedSurgicalMar ... (21.86Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/20859
    DOI: 10.1117/12.2554965
    ISSN: 0277-786X
    ISSN: 1996-756X
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Pardo Franco, ArturoAutoridad Unican; Gutiérrez Gutiérrez, José AlbertoAutoridad Unican; Streeter, Samuel S.; Maloney, Benjamin W.; López Higuera, José MiguelAutoridad Unican; Pogue, Brian Wiliam; Conde Portilla, Olga MaríaAutoridad Unican
    Fecha
    2020-04-01
    Derechos
    © 2020 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
    Publicado en
    Proceedings of SPIE, 2020, 11362, 113620I
    Clinical Biophotonics Conference, France (Online), 2020
    Editorial
    SPIE Society of Photo-Optical Instrumentation Engineers
    Enlace a la publicación
    https://doi.org/10.1117/12.2554965
    Resumen/Abstract
    With an adequate tissue dataset, supervised classification of tissue optical properties can be achieved in SFDI images of breast cancer lumpectomies with deep convolutional networks. Nevertheless, the use of a black-box classifier in current ex vivo setups provides output diagnostic images that are inevitably bound to show misclassified areas due to inter- and intra-patient variability that could potentially be misinterpreted in a real clinical setting. This work proposes the use of a novel architecture, the self-introspective classifier, where part of the model is dedicated to estimating its own expected classification error. The model can be used to generate metrics of self-confidence for a given classification problem, which can then be employed to show how much the network is familiar with the new incoming data. A heterogenous ensemble of four deep convolutional models with self-confidence, each sensitive to a different spatial scale of features, is tested on a cohort of 70 specimens, achieving a global leave-one-out cross-validation accuracy of up to 81%, while being able to explain where in the output classification image the system is most confident.
    Colecciones a las que pertenece
    • D50 Congresos [464]
    • D50 Proyectos de Investigación [404]
    • IDIVAL Proyectos de investigación [191]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España