Mostrar el registro sencillo

dc.contributor.authorPardo Franco, Arturo 
dc.contributor.authorStreeter, Samuel S.
dc.contributor.authorMaloney, Benjamin W.
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.authorPogue, Brian Wiliam
dc.contributor.authorConde Portilla, Olga María 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-03-04T15:57:00Z
dc.date.available2021-03-04T15:57:00Z
dc.date.issued2020-02-21
dc.identifier.issn0277-786X
dc.identifier.issn1996-756X
dc.identifier.otherFIS2010-19860es_ES
dc.identifier.otherTEC2016-76021-C2-2-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/20858
dc.description.abstractMargin assessment in gross pathology is becoming feasible as various explanatory deep learning-powered methods are able to obtain models for macroscopic textural information, tissue microstructure, and local surface optical properties. Unfortunately, each different method seems to lack enough diagnostic power to perform an adequate classification on its own. This work proposes using several separately trained deep convolutional networks, and averaging their responses, in order to achieve a better margin assessment. Qualitative leave-one-out cross-validation results are discussed for a cohort of 70 samples.es_ES
dc.description.sponsorshipSpanish Ministry of Science, Innovation and Universities (FIS2010-19860, TEC2016-76021-C2-2-R), Spanish Ministry of Economy, Industry and Competitiveness and Instituto de Salud Carlos III (DTS17-00055, DTS15- 00238), Instituto de Investigación Valdecilla (INNVAL16/02, INNVAL18/23), Spanish Ministry of Education, Culture, and Sports (FPU16/05705).es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherSPIE Society of Photo-Optical Instrumentation Engineerses_ES
dc.rights© 2020 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.es_ES
dc.sourceProceedings of SPIE, 2020, 11253, 112530Kes_ES
dc.sourceBiomedical Applications of Light Scattering X, San Francisco, California, 2020es_ES
dc.titleScatter signatures in SFDI data enable breast surgical margin delineation via ensemble learninges_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1117/12.2546945es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1117/12.2546945
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo