Mostrar el registro sencillo

dc.contributor.authorDíez Fernández, Luis Francisco 
dc.contributor.authorAgüero Calvo, Ramón 
dc.contributor.authorFernández Gutiérrez, Alfonso
dc.contributor.authorZaki, Yasir
dc.contributor.authorKhan, Muhammad
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-03-02T16:37:12Z
dc.date.available2021-03-02T16:37:12Z
dc.date.issued2020
dc.identifier.isbn978-1-7281-9722-7
dc.identifier.isbn978-1-7281-9723-4
dc.identifier.otherRTI2018-093475-AI00es_ES
dc.identifier.urihttp://hdl.handle.net/10902/20841
dc.description.abstractThis paper studies how learning techniques can be used by the congestion control algorithms employed by transport protocols over 5G wireless channels, in particular millimeter waves. We show how metrics measured at the transport layer might be valuable to ascertain the congestion level. In situations characterized by a high correlation between such parameters and the actual congestion, it is observed that the performance of unsupervised learning methods is comparable to supervised learning approaches. Exploiting the ns-3 platform to perform an in-depth, realistic assessment, allows us to study the impact of various layers of the protocol stack. We also consider different scheduling policies to discriminate whether the allocation of radio resources impacts the performance of the proposed scheme.es_ES
dc.description.sponsorshipThis work has been funded by the Spanish Government (Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional, MINECO-FEDER) by means of the project FIERCE: Future Internet Enabled Resilient smart CitiEs (RTI2018-093475-AI00).es_ES
dc.format.extent6 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rights© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.source16th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Thessaloniki, Greece , 2020, 294-299es_ES
dc.subject.other5Ges_ES
dc.subject.otherMillimeter waveses_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherCongestion controles_ES
dc.subject.otherNetwork simulationes_ES
dc.titleLearning congestion over millimeter-wave channelses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/WiMob50308.2020.9253443es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/WiMob50308.2020.9253443
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo