• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multiple importance sampling for symbol error rate estimation of maximum-likelihood detectors in MIMO channels

    Ver/Abrir
    MultipleImportanceSa ... (1.969Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/20835
    DOI: 10.1109/TSP.2021.3055961
    ISSN: 1053-587X
    ISSN: 1941-0476
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Elvira Arregui, Víctor; Santamaría Caballero, Luis IgnacioAutoridad Unican
    Fecha
    2021-02
    Derechos
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE Transactions on Signal Processing, 2021, 69, 1200-1212
    Editorial
    Institute of Electrical and Electronics Engineers, Inc.
    Enlace a la publicación
    https://doi.org/10.1109/TSP.2021.3055961
    Palabras clave
    Multiple importance sampling
    Symbol error rate
    Monte Carlo
    Multiple-input multiple-output (MIMO)
    Maximum likelihood (ML) detection
    Resumen/Abstract
    In this paper we propose a multiple importance sampling (MIS) method for the efficient symbol error rate (SER) estimation of maximum likelihood (ML) multiple-input multiple-output (MIMO) detectors. Given a transmitted symbol from the input lattice, obtaining the SER requires the computation of an integral outside its Voronoi region in a high-dimensional space, for which a closed-form solution does not exist. Hence, the SER must be approximated through crude or naive Monte Carlo (MC) simulations. This practice is widely used in the literature despite its inefficiency, particularly severe at high signal-to-noise-ratio (SNR) or for systems with stringent SER requirements. It is well-known that more sophisticated MC-based techniques such as MIS, when carefully designed, can reduce the variance of the estimators in several orders of magnitude with respect to naive Monte Carlo in rare-event estimation, or equivalently, they need significantly less samples for attaining a desired performance. The proposed MIS method provides unbiased SER estimates by sampling from a mixture of components that are carefully chosen and parametrized. The number of components, the parameters of the components, and their weights in the mixture, are automatically chosen by the proposed method. As a result, the proposed method is flexible, easy-to-use, theoretically sound, and presents a high performance in a variety of scenarios. We show in our simulations that SERs lower than 10?8 can be accurately estimated with just 104 random samples.
    Colecciones a las que pertenece
    • D12 Artículos [360]
    • D12 Proyectos de Investigación [519]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España