Mostrar el registro sencillo

dc.contributor.authorGonzález Izquierdo, Palmerina
dc.contributor.authorFabelo Rosa, Óscar
dc.contributor.authorBeobide Pacheco, Garikoitz
dc.contributor.authorCano, Israel
dc.contributor.authorRuiz de Larramendi, Idoia
dc.contributor.authorVallcorba, Oriol
dc.contributor.authorRodríguez Fernández, Jesús 
dc.contributor.authorFernández-Díaz, María Teresa
dc.contributor.authorPedro del Valle, Imanol de 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-02-25T14:29:21Z
dc.date.available2021-02-25T14:29:21Z
dc.date.issued2020
dc.identifier.issn2046-2069
dc.identifier.otherMAT2017-89239- C2-(1,2)-P ;es_ES
dc.identifier.urihttp://hdl.handle.net/10902/20811
dc.description.abstractA novel imidazolium halometallate molten salt with formula (trimim)[FeCl4] (trimim: 1,2,3-trimethylimidazolium) was synthetized and studied with structural and physico-chemical characterization. Variable-temperature synchrotron X-ray powder diffraction (SXPD) from 100 to 400 K revealed two structural transitions at 200 and 300 K. Three different crystal structures were determined combining single crystal X-ray diffraction (SCXD), neutron powder diffraction (NPD), and SXPD. From 100 to 200 K, the compound exhibits a monoclinic crystal structure with space group P21/c. At 200 K, the former crystal system and space group are retained, but a disorder in the organic cations is introduced. Above 300 K, the structure transits to the orthorhombic space group Pbcn, retaining the crystallinity up to 400 K. The study of the thermal expansion process in this temperature range showed anisotropically evolving cell parameters with an axial negative thermal expansion. Such an induction occurs immediately after the crystal phase transition due to the translational and reorientational dynamic displacements of the imidazolium cation within the crystal building. Electrochemical impedance spectroscopy (EIS) demonstrated that this motion implies a high and stable solid-state ionic conduction (range from 4 10 6 S cm 1 at room temperature to 5.5 10 5 S cm 1 at 400 K). In addition, magnetization and heat capacity measurements proved the presence of a three-dimensional antiferromagnetic ordering below 3 K. The magnetic structure, determined by neutron powder diffraction, corresponds to ferromagnetic chains along the a-axis, which are antiferromagnetically coupled to the nearest neighboring chains through an intricate network of superexchange pathways, in agreement with the magnetometry measurementses_ES
dc.description.sponsorshipFinancial support from Universidad de Cantabria (Proyecto Puente convocatoria 2018 financed by SODERCAN_FEDER), Universidad del Pa´ıs Vasco/Euskal Herriko Unibertsitatea (GIU17/50 and PPG17/37) and Ministerio de Economia y Competividad (MAT2017-89239- C2-(1,2)-P).es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rights© The Royal Society of Chemistry 2020. Attribution-NonCommercial 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceRSC Adv., 2020, 10, 11200es_ES
dc.titleCrystal structure, magneto-structural correlation, thermal and electrical studies of an imidazolium halometallate molten salt: (trimim)[FeCl4]es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1039/d0ra00245c
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© The Royal Society of Chemistry 2020. Attribution-NonCommercial 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como © The Royal Society of Chemistry 2020. Attribution-NonCommercial 4.0 International