Mostrar el registro sencillo

dc.contributor.authorGutiérrez Vela, Yael 
dc.contributor.authorGarcía Fernández, Pablo (físico) 
dc.contributor.authorJunquera Quintana, Francisco Javier 
dc.contributor.authorBrown, April S.
dc.contributor.authorMoreno Gracia, Fernando 
dc.contributor.authorLosurdo, María
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-02-24T15:12:21Z
dc.date.available2021-02-24T15:12:21Z
dc.date.issued2020
dc.identifier.issn2192-8614
dc.identifier.otherPGC2018- 096649-B-100es_ES
dc.identifier.urihttp://hdl.handle.net/10902/20799
dc.description.abstractReconfigurable plasmonics is driving an extensive quest for active materials that can support a controllable modulation of their optical properties for dynamically tunable plasmonic structures. Here, polymorphic gallium (Ga) is demonstrated to be a very promising candidate for adaptive plasmonics and reconfigurable photonics applications. The Ga sp-metal is widely known as a liquid metal at room temperature. In addition to the many other compelling attributes of nanostructured Ga, including minimal oxidation and biocompatibility, its six phases have varying degrees of metallic character, providing a wide gamut of electrical conductivity and optical behavior tunability. Here, the dielectric function of the several Ga phases is introduced and correlated with their respective electronic structures. The key conditions for optimal optical modulation and switching for each Ga phase are evaluated. Additionally, we provide a comparison of Ga with other more common phase-change materials, showing better performance of Ga at optical frequencies. Furthermore, we first report, to the best of our knowledge, the optical properties of liquid Ga in the terahertz (THz) range showing its broad plasmonic tunability from ultraviolet to visible-infrared and down to the THz regime. Finally, we provide both computational and experimental evidence of extension of Ga polymorphism to bidimensional twodimensional (2D) gallenene, paving the way to new bidimensional reconfigurable plasmonic platforms.es_ES
dc.description.sponsorshipF.M. acknowledges MICINN (Spanish Ministry of Science and Innovation) through project PGC2018-096649-B-100.es_ES
dc.format.extent20 p.es_ES
dc.language.isoenges_ES
dc.publisherDe Gruyteres_ES
dc.rights© 2020 Yael Gutiérrez et al., published by De Gruyter. Attribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceNanophotonics 2020; 9(14): 4233-4252es_ES
dc.subject.otherActive plasmonicses_ES
dc.subject.otherGallenenees_ES
dc.subject.otherGalliumes_ES
dc.subject.otherPhase-change materialses_ES
dc.subject.otherReconfigurable plasmonicses_ES
dc.titlePolymorphic gallium for active resonance tuningin photonic nanostructures: from bulk gallium totwo-dimensional (2D) gallenenees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1515/nanoph-2020-0314es_ES
dc.rights.accessRightsopenAccesses_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020 Yael Gutiérrez et al., published by De Gruyter. Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como © 2020 Yael Gutiérrez et al., published by De Gruyter. Attribution 4.0 International