Mostrar el registro sencillo

dc.contributor.authorGancedo, Francisco
dc.contributor.authorGranero Belinchón, Rafael 
dc.contributor.authorScrobogna, Stefano
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-02-23T16:23:35Z
dc.date.issued2020
dc.identifier.issn0294-1449
dc.identifier.issn1873-1430
dc.identifier.otherMTM2017-89976-Pes_ES
dc.identifier.otherMTM2017-82184-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/20789
dc.description.abstractThis paper studies the dynamics of an incompressible fluid driven by gravity and capillarity forces in a porous medium. The main interest is the stabilization of the fluid in Rayleigh-Taylor unstable situations where the fluid lays on top of a dry region. An important feature considered here is that the layer of fluid is under an impervious wall. This physical situation hasbeen widely study by mean of thin film approximations in the case of small characteristic high of the fluid considering its strong interaction with the fixed boundary. Here, instead of considering any simplification leading to asymptotic models, we deal with the complete free boundary problem. We prove that, if the fluid interface is smaller than an explicit constant, the solution is global in time and it becomes instantly analytic. In particular, the fluid does not form drops in finite time. Our results are stated in terms of Wiener spaces for the interface together with some non-standard Wiener-Sobolev anisotropic spaces required to describe the regularity of the fluid pressure and velocity. These Wiener-Sobolev spaces are of independent interest as they can be useful in other problems. Finally, let us remark that our techniques do not rely on the irrotational character of the fluid in the bulk and they can be applied to other free boundary problems.es_ES
dc.description.sponsorshipThe research of F.G. has been partially supported by the grant MTM2017-89976-P (Spain) and by the ERC through the Starting Grant project H2020-EU.1.1.-639227. R. G-B has been funded by the grant MTM2017-89976-P from the Spanish Government. The research of S.S. is supported by the Basque Government through the BERC 2018-2021 program and by Spanish Ministry of Economy and Competitiveness MINECO through BCAM Severo Ochoa excellence accreditation SEV-2017-0718 and through project MTM2017-82184-R funded by (AEI/FEDER, UE) and acronym “DESFLUes_ES
dc.format.extent45 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceAnn. I. H. Poincaré -AN 37 (2020) 1299-1343es_ES
dc.subject.otherFree boundary of incompressible fluides_ES
dc.subject.otherMuskat problemes_ES
dc.subject.otherRayleigh-Taylor instabilityes_ES
dc.subject.otherSurface tensiones_ES
dc.subject.otherFluid layeres_ES
dc.subject.otherGlobal existencees_ES
dc.titleSurface tension stabilization of the Rayleigh-Taylor instability for a fluid layer in a porous mediumes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.anihpc.2020.04.005es_ES
dc.rights.accessRightsopenedAccesses_ES
dc.identifier.DOI10.1016/j.anihpc.2020.04.005
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license