Mostrar el registro sencillo

dc.contributor.authorMontaño, Jennifer
dc.contributor.authorCoco, Giovanni
dc.contributor.authorÁlvarez Antolínez, José Antonio
dc.contributor.authorBeuzen, Tomas
dc.contributor.authorBryan, Karin R.
dc.contributor.authorCagigal Gil, Laura 
dc.contributor.authorCastelle, Bruno
dc.contributor.authorDavidson, Mark A.
dc.contributor.authorGoldstein, Evan B.
dc.contributor.authorIbaceta, Raimundo
dc.contributor.authorIdier, Déborah
dc.contributor.authorLudka, Bonnie C
dc.contributor.authorMasoud-Ansari, Sina
dc.contributor.authorMéndez Incera, Fernando Javier 
dc.contributor.authorMurray, A. Brad
dc.contributor.authorPlant, Nathaniel G.
dc.contributor.authorRatliff, Katherine M.
dc.contributor.authorRobinet, Arthur
dc.contributor.authorRueda Zamora, Ana Cristina 
dc.contributor.authorSénécha, Nadia
dc.contributor.authorSimmons, Joshua A.
dc.contributor.authorSplinter, Kristen D.
dc.contributor.authorStephens, Scott
dc.contributor.authorTownend, Ian
dc.contributor.authorVitousek, Sean
dc.contributor.authorVos, Kilian
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-02-23T09:55:14Z
dc.date.available2021-02-23T09:55:14Z
dc.date.issued2020
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10902/20765
dc.description.abstractABSTRACT: Beaches around the world continuously adjust to daily and seasonal changes in wave and tide conditions, which are themselves changing over longer time-scales. Different approaches to predict multi-year shoreline evolution have been implemented; however, robust and reliable predictions of shoreline evolution are still problematic even in short-term scenarios (shorter than decadal). Here we show results of a modelling competition, where 19 numerical models (a mix of established shoreline models and machine learning techniques) were tested using data collected for Tairua beach, New Zealand with 18 years of daily averaged alongshore shoreline position and beach rotation (orientation) data obtained from a camera system. In general, traditional shoreline models and machine learning techniques were able to reproduce shoreline changes during the calibration period (1999-2014) for normal conditions but some of the model struggled to predict extreme and fast oscillations. During the forecast period (unseen data, 2014-2017), both approaches showed a decrease in models' capability to predict the shoreline position. This was more evident for some of the machine learning algorithms. A model ensemble performed better than individual models and enables assessment of uncertainties in model architecture. Research-coordinated approaches (e.g., modelling competitions) can fuel advances in predictive capabilities and provide a forum for the discussion about the advantages/disadvantages of available models.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherNature Publishing Groupes_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceScientific reports 10, Article number: 2137 (2020)es_ES
dc.subject.otherNatural hazardses_ES
dc.subject.otherPhysical oceanographyes_ES
dc.titleBlind testing of shoreline evolution modelses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1038/s41598-020-59018-yes_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1038/s41598-020-59018-y
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International