Mostrar el registro sencillo

dc.contributor.authorCasanueva Vicente, Ana 
dc.contributor.authorHerrera García, Sixto 
dc.contributor.authorFernández Fernández, Jesús (matemático) 
dc.contributor.authorFrías Domínguez, María Dolores 
dc.contributor.authorGutiérrez Llorente, José Manuel
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-02-10T08:17:59Z
dc.date.available2021-02-10T08:17:59Z
dc.date.issued2013
dc.identifier.issn1561-8633
dc.identifier.issn1684-9981
dc.identifier.otherCGL2010-22158-C02es_ES
dc.identifier.otherCGL2010-21869es_ES
dc.identifier.urihttp://hdl.handle.net/10902/20683
dc.description.abstractThe study of extreme events has become of great interest in recent years due to their direct impact on society. Extremes are usually evaluated by using extreme indicators, based on order statistics on the tail of the probability distribution function (typically percentiles). In this study, we focus on the tail of the distribution of daily maximum and minimum temperatures. For this purpose, we analyse high (95th) and low (5th) percentiles in daily maximum and minimum temperatures on the Iberian Peninsula, respectively, derived from different downscaling methods (statistical and dynamical). First, we analyse the performance of reanalysis-driven downscaling methods in present climate conditions. The comparison among the different methods is performed in terms of the bias of seasonal percentiles, considering as observations the public gridded data sets E-OBS and Spain02, and obtaining an estimation of both the mean and spatial percentile errors. Secondly, we analyse the increments of future percentile projections under the SRES A1B scenario and compare them with those corresponding to the mean temperature, showing that their relative importance depends on the method, and stressing the need to consider an ensemble of methodologies.es_ES
dc.description.sponsorshipWe acknowledge the data providers in the ECA&D project (http://eca.knmi.nl), the EU-FP6 project ENSEMBLES for the E-OBS data set (http://ensembles-eu.metoffice.com) and the institutions involved in the ESTCENA Project (200800050084078) funded by the Spanish R&D programme. This work is supported by project EXTREMBLES (CGL2010-21869) funded by the Spanish R&D programme, and CLIM-RUN (concerning the statistical approach) and FUME (concerning the dynamical approach) from the 7th European Framework Programme (FP7). A. Casanueva extends thanks to the Spanish Ministry of Science and Innovation for the funding provided within the FPI programme (CORWES project, CGL2010-22158-C02).es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherEuropean Geosciences Union (EGU) ; Copernicus Publications (editor comercial)es_ES
dc.rights(c) Author(s) 2013. Atribución 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceNatural Hazards and Earth System Sciences Volume 13, Issue 8, 2013, Pages 2089-2099es_ES
dc.titleEvaluation and projection of daily temperature percentiles from statistical and dynamical downscaling methodses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/265192/EU/Climate Local Information in the Mediterranean region: Responding to User Needs/CLIM-RUN/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/243888/EU/Forest fires under climate, social and economic changes in Europe, the Mediterranean and other fire-affected areas of the world/FUME/es_ES
dc.identifier.DOI10.5194/nhess-13-2089-2013
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

(c) Author(s) 2013. Atribución 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como (c) Author(s) 2013. Atribución 3.0 España