• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Direct and component-wise bias correction of multi-variate climate indices: the percentile adjustment function diagnostic tool

    Ver/Abrir
    Directandcomponentwi ... (1.701Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/20667
    DOI: 10.1007/s10584-018-2167-5
    ISSN: 0165-0009
    ISSN: 1573-1480
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Casanueva Vicente, AnaAutoridad Unican; Bedía Jiménez, Joaquín; Herrera García, SixtoAutoridad Unican; Fernández Fernández, Jesús (matemático)Autoridad Unican; Gutiérrez Llorente, José Manuel
    Fecha
    2018-04
    Derechos
    © Springer. The final publication is available at Springer via http://dx.doi.org/10.1007/s10584-018-2167-5
    Publicado en
    Climatic Change April 2018, Volume 147, Issue 3?4, pp 411-425
    Editorial
    Kluwer
    Enlace a la publicación
    https://link.springer.com/article/10.1007%2Fs10584-018-2167-5
    Palabras clave
    Bias correction
    Bias adjustment
    Fire weather index
    Climate change
    Quantile mapping
    Regional climate models
    Resumen/Abstract
    The use and development of bias correction (BC) methods has grown fast in recent years, due to the increased demand of unbiased projections by many sectoral climate change impact applications. Case studies are frequently based on multi-variate climate indices (CIs) combining two or more essential climate variables that are frequently individually corrected prior to CI calculation. This poses the question of whether the BC method modifies the inter-variable dependencies and eventually the climate change signal. The direct bias correction of the multi-variate CI stands as a usual alternative, since it preserves the physical and temporal coherence among the primary variables as represented in the dynamical model output, at the expense of incorporating the individual biases on the CI with an effect difficult to foresee, particularly in the case of complex CIs bearing in their formulation non-linear relationships between components. Such is the case of the Fire Weather Index (FWI), a meteorological fire danger indicator frequently used in forest fire prevention and research. In the present work, we test the suitability of the direct BC approach on FWI as a representative multi-variate CI, assessing its performance in present climate conditions and its effect on the climate change signal when applied to future projections. Moreover, the results are compared with the common approach of correcting the input variables separately. To this aim, we apply the widely used empirical quantile mapping method (QM), adjusting the 99 empirical percentiles. The analysis of the percentile adjustment function (PAF) provides insight into the effect of the QM on the climate change signal. Although both approaches present similar results in the present climate, the direct correction introduces a greater modification of the original change signal. These results warn against the blind use of QM, even in the case of essential climate variables or uni-variate CIs.
    Colecciones a las que pertenece
    • D20 Artículos [468]
    • D20 Proyectos de Investigación [328]
    • D52 Artículos [1337]
    • D52 Proyectos de investigación [424]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España